![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omecl | Structured version Visualization version GIF version |
Description: The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omecl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omecl.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omecl.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Ref | Expression |
---|---|
omecl | ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omecl.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | omecl.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | 1, 2 | omef 41216 | . 2 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
4 | omecl.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
5 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑋 = ∪ dom 𝑂) |
6 | dmexg 7262 | . . . . . . . 8 ⊢ (𝑂 ∈ OutMeas → dom 𝑂 ∈ V) | |
7 | 1, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → dom 𝑂 ∈ V) |
8 | uniexg 7120 | . . . . . . 7 ⊢ (dom 𝑂 ∈ V → ∪ dom 𝑂 ∈ V) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
10 | 5, 9 | eqeltrd 2839 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
11 | 10, 4 | ssexd 4957 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
12 | elpwg 4310 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
14 | 4, 13 | mpbird 247 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
15 | 3, 14 | ffvelrnd 6523 | 1 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 dom cdm 5266 ‘cfv 6049 (class class class)co 6813 0cc0 10128 +∞cpnf 10263 [,]cicc 12371 OutMeascome 41209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ome 41210 |
This theorem is referenced by: caragen0 41226 omexrcl 41227 caragenunidm 41228 omessre 41230 caragenuncllem 41232 caragendifcl 41234 omeunle 41236 omeiunle 41237 omeiunltfirp 41239 carageniuncllem2 41242 carageniuncl 41243 caratheodorylem1 41246 caratheodorylem2 41247 omege0 41253 |
Copyright terms: Public domain | W3C validator |