Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzuzi Structured version   Visualization version   GIF version

Theorem om2uzuzi 12942
 Description: The value 𝐺 (see om2uz0i 12940) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzuzi (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem om2uzuzi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6352 . . 3 (𝑦 = ∅ → (𝐺𝑦) = (𝐺‘∅))
21eleq1d 2824 . 2 (𝑦 = ∅ → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺‘∅) ∈ (ℤ𝐶)))
3 fveq2 6352 . . 3 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
43eleq1d 2824 . 2 (𝑦 = 𝑧 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺𝑧) ∈ (ℤ𝐶)))
5 fveq2 6352 . . 3 (𝑦 = suc 𝑧 → (𝐺𝑦) = (𝐺‘suc 𝑧))
65eleq1d 2824 . 2 (𝑦 = suc 𝑧 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺‘suc 𝑧) ∈ (ℤ𝐶)))
7 fveq2 6352 . . 3 (𝑦 = 𝐴 → (𝐺𝑦) = (𝐺𝐴))
87eleq1d 2824 . 2 (𝑦 = 𝐴 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺𝐴) ∈ (ℤ𝐶)))
9 om2uz.1 . . . 4 𝐶 ∈ ℤ
10 om2uz.2 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
119, 10om2uz0i 12940 . . 3 (𝐺‘∅) = 𝐶
12 uzid 11894 . . . 4 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
139, 12ax-mp 5 . . 3 𝐶 ∈ (ℤ𝐶)
1411, 13eqeltri 2835 . 2 (𝐺‘∅) ∈ (ℤ𝐶)
15 peano2uz 11934 . . 3 ((𝐺𝑧) ∈ (ℤ𝐶) → ((𝐺𝑧) + 1) ∈ (ℤ𝐶))
169, 10om2uzsuci 12941 . . . 4 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
1716eleq1d 2824 . . 3 (𝑧 ∈ ω → ((𝐺‘suc 𝑧) ∈ (ℤ𝐶) ↔ ((𝐺𝑧) + 1) ∈ (ℤ𝐶)))
1815, 17syl5ibr 236 . 2 (𝑧 ∈ ω → ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ𝐶)))
192, 4, 6, 8, 14, 18finds 7257 1 (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1632   ∈ wcel 2139  Vcvv 3340  ∅c0 4058   ↦ cmpt 4881   ↾ cres 5268  suc csuc 5886  ‘cfv 6049  (class class class)co 6813  ωcom 7230  reccrdg 7674  1c1 10129   + caddc 10131  ℤcz 11569  ℤ≥cuz 11879 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880 This theorem is referenced by:  om2uzlti  12943  om2uzlt2i  12944  om2uzrani  12945  om2uzf1oi  12946  uzrdgfni  12951  uzrdgxfr  12960  unbenlem  15814
 Copyright terms: Public domain W3C validator