MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzrani Structured version   Visualization version   GIF version

Theorem om2uzrani 12958
Description: Range of 𝐺 (see om2uz0i 12953). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzrani ran 𝐺 = (ℤ𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem om2uzrani
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 7682 . . . . . 6 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω
2 om2uz.2 . . . . . . 7 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
32fneq1i 6125 . . . . . 6 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω)
41, 3mpbir 221 . . . . 5 𝐺 Fn ω
5 fvelrnb 6385 . . . . 5 (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
64, 5ax-mp 5 . . . 4 (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦)
7 om2uz.1 . . . . . . 7 𝐶 ∈ ℤ
87, 2om2uzuzi 12955 . . . . . 6 (𝑧 ∈ ω → (𝐺𝑧) ∈ (ℤ𝐶))
9 eleq1 2837 . . . . . 6 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) ∈ (ℤ𝐶) ↔ 𝑦 ∈ (ℤ𝐶)))
108, 9syl5ibcom 235 . . . . 5 (𝑧 ∈ ω → ((𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
1110rexlimiv 3174 . . . 4 (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶))
126, 11sylbi 207 . . 3 (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶))
13 eleq1 2837 . . . 4 (𝑧 = 𝐶 → (𝑧 ∈ ran 𝐺𝐶 ∈ ran 𝐺))
14 eleq1 2837 . . . 4 (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐺𝑦 ∈ ran 𝐺))
15 eleq1 2837 . . . 4 (𝑧 = (𝑦 + 1) → (𝑧 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺))
167, 2om2uz0i 12953 . . . . 5 (𝐺‘∅) = 𝐶
17 peano1 7231 . . . . . 6 ∅ ∈ ω
18 fnfvelrn 6499 . . . . . 6 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
194, 17, 18mp2an 664 . . . . 5 (𝐺‘∅) ∈ ran 𝐺
2016, 19eqeltrri 2846 . . . 4 𝐶 ∈ ran 𝐺
217, 2om2uzsuci 12954 . . . . . . . . 9 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
22 oveq1 6799 . . . . . . . . 9 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) + 1) = (𝑦 + 1))
2321, 22sylan9eq 2824 . . . . . . . 8 ((𝑧 ∈ ω ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1))
24 peano2 7232 . . . . . . . . . 10 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
25 fnfvelrn 6499 . . . . . . . . . 10 ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
264, 24, 25sylancr 567 . . . . . . . . 9 (𝑧 ∈ ω → (𝐺‘suc 𝑧) ∈ ran 𝐺)
2726adantr 466 . . . . . . . 8 ((𝑧 ∈ ω ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
2823, 27eqeltrrd 2850 . . . . . . 7 ((𝑧 ∈ ω ∧ (𝐺𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺)
2928rexlimiva 3175 . . . . . 6 (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺)
306, 29sylbi 207 . . . . 5 (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺)
3130a1i 11 . . . 4 (𝑦 ∈ (ℤ𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
3213, 14, 15, 14, 20, 31uzind4i 11951 . . 3 (𝑦 ∈ (ℤ𝐶) → 𝑦 ∈ ran 𝐺)
3312, 32impbii 199 . 2 (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶))
3433eqriv 2767 1 ran 𝐺 = (ℤ𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wrex 3061  Vcvv 3349  c0 4061  cmpt 4861  ran crn 5250  cres 5251  suc csuc 5868   Fn wfn 6026  cfv 6031  (class class class)co 6792  ωcom 7211  reccrdg 7657  1c1 10138   + caddc 10140  cz 11578  cuz 11887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888
This theorem is referenced by:  om2uzf1oi  12959
  Copyright terms: Public domain W3C validator