MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzlti Structured version   Visualization version   GIF version

Theorem om2uzlti 12864
Description: Less-than relation for 𝐺 (see om2uz0i 12861). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzlti ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem om2uzlti
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2792 . . . . 5 (𝑧 = ∅ → (𝐴𝑧𝐴 ∈ ∅))
2 fveq2 6304 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
32breq2d 4772 . . . . 5 (𝑧 = ∅ → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘∅)))
41, 3imbi12d 333 . . . 4 (𝑧 = ∅ → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))))
54imbi2d 329 . . 3 (𝑧 = ∅ → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))))
6 eleq2 2792 . . . . 5 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
7 fveq2 6304 . . . . . 6 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
87breq2d 4772 . . . . 5 (𝑧 = 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝑦)))
96, 8imbi12d 333 . . . 4 (𝑧 = 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))))
109imbi2d 329 . . 3 (𝑧 = 𝑦 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))))
11 eleq2 2792 . . . . 5 (𝑧 = suc 𝑦 → (𝐴𝑧𝐴 ∈ suc 𝑦))
12 fveq2 6304 . . . . . 6 (𝑧 = suc 𝑦 → (𝐺𝑧) = (𝐺‘suc 𝑦))
1312breq2d 4772 . . . . 5 (𝑧 = suc 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
1411, 13imbi12d 333 . . . 4 (𝑧 = suc 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
1514imbi2d 329 . . 3 (𝑧 = suc 𝑦 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
16 eleq2 2792 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
17 fveq2 6304 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
1817breq2d 4772 . . . . 5 (𝑧 = 𝐵 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝐵)))
1916, 18imbi12d 333 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
2019imbi2d 329 . . 3 (𝑧 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))))
21 noel 4027 . . . . 5 ¬ 𝐴 ∈ ∅
2221pm2.21i 116 . . . 4 (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))
2322a1i 11 . . 3 (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))
24 id 22 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))
25 fveq2 6304 . . . . . . . 8 (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦))
2625a1i 11 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦)))
2724, 26orim12d 919 . . . . . 6 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → ((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
28 elsuc2g 5906 . . . . . . . . 9 (𝑦 ∈ ω → (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦)))
2928bicomd 213 . . . . . . . 8 (𝑦 ∈ ω → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
3029adantl 473 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
31 om2uz.1 . . . . . . . . . . 11 𝐶 ∈ ℤ
32 om2uz.2 . . . . . . . . . . 11 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
3331, 32om2uzsuci 12862 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺‘suc 𝑦) = ((𝐺𝑦) + 1))
3433breq2d 4772 . . . . . . . . 9 (𝑦 ∈ ω → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
3534adantl 473 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
3631, 32om2uzuzi 12863 . . . . . . . . 9 (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
3731, 32om2uzuzi 12863 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶))
38 eluzelz 11810 . . . . . . . . . 10 ((𝐺𝐴) ∈ (ℤ𝐶) → (𝐺𝐴) ∈ ℤ)
39 eluzelz 11810 . . . . . . . . . 10 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
40 zleltp1 11541 . . . . . . . . . 10 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝑦) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4138, 39, 40syl2an 495 . . . . . . . . 9 (((𝐺𝐴) ∈ (ℤ𝐶) ∧ (𝐺𝑦) ∈ (ℤ𝐶)) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4236, 37, 41syl2an 495 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4336, 38syl 17 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℤ)
4443zred 11595 . . . . . . . . 9 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℝ)
4537, 39syl 17 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℤ)
4645zred 11595 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℝ)
47 leloe 10237 . . . . . . . . 9 (((𝐺𝐴) ∈ ℝ ∧ (𝐺𝑦) ∈ ℝ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
4844, 46, 47syl2an 495 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
4935, 42, 483bitr2rd 297 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦)) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
5030, 49imbi12d 333 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5127, 50syl5ib 234 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5251expcom 450 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
5352a2d 29 . . 3 (𝑦 ∈ ω → ((𝐴 ∈ ω → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))) → (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
545, 10, 15, 20, 23, 53finds 7209 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
5554impcom 445 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1596  wcel 2103  Vcvv 3304  c0 4023   class class class wbr 4760  cmpt 4837  cres 5220  suc csuc 5838  cfv 6001  (class class class)co 6765  ωcom 7182  reccrdg 7625  cr 10048  1c1 10050   + caddc 10052   < clt 10187  cle 10188  cz 11490  cuz 11800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801
This theorem is referenced by:  om2uzlt2i  12865  om2uzf1oi  12867
  Copyright terms: Public domain W3C validator