![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2uzlt2i | Structured version Visualization version GIF version |
Description: The mapping 𝐺 (see om2uz0i 12932) preserves order. (Contributed by NM, 4-May-2005.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzlt2i | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.1 | . . 3 ⊢ 𝐶 ∈ ℤ | |
2 | om2uz.2 | . . 3 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | 1, 2 | om2uzlti 12935 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |
4 | 1, 2 | om2uzlti 12935 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 ∈ 𝐴 → (𝐺‘𝐵) < (𝐺‘𝐴))) |
5 | fveq2 6344 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐺‘𝐵) = (𝐺‘𝐴)) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 = 𝐴 → (𝐺‘𝐵) = (𝐺‘𝐴))) |
7 | 4, 6 | orim12d 919 | . . . 4 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → ((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) |
8 | 7 | ancoms 468 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → ((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) |
9 | nnon 7228 | . . . 4 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
10 | nnon 7228 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
11 | onsseleq 5918 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
12 | ontri1 5910 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
13 | 11, 12 | bitr3d 270 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
14 | 9, 10, 13 | syl2anr 496 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
15 | 1, 2 | om2uzuzi 12934 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐺‘𝐵) ∈ (ℤ≥‘𝐶)) |
16 | eluzelre 11882 | . . . . 5 ⊢ ((𝐺‘𝐵) ∈ (ℤ≥‘𝐶) → (𝐺‘𝐵) ∈ ℝ) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝐵 ∈ ω → (𝐺‘𝐵) ∈ ℝ) |
18 | 1, 2 | om2uzuzi 12934 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
19 | eluzelre 11882 | . . . . 5 ⊢ ((𝐺‘𝐴) ∈ (ℤ≥‘𝐶) → (𝐺‘𝐴) ∈ ℝ) | |
20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ ℝ) |
21 | leloe 10308 | . . . . 5 ⊢ (((𝐺‘𝐵) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → ((𝐺‘𝐵) ≤ (𝐺‘𝐴) ↔ ((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) | |
22 | lenlt 10300 | . . . . 5 ⊢ (((𝐺‘𝐵) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → ((𝐺‘𝐵) ≤ (𝐺‘𝐴) ↔ ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) | |
23 | 21, 22 | bitr3d 270 | . . . 4 ⊢ (((𝐺‘𝐵) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → (((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)) ↔ ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) |
24 | 17, 20, 23 | syl2anr 496 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)) ↔ ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) |
25 | 8, 14, 24 | 3imtr3d 282 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐴 ∈ 𝐵 → ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) |
26 | 3, 25 | impcon4bid 217 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1624 ∈ wcel 2131 Vcvv 3332 ⊆ wss 3707 class class class wbr 4796 ↦ cmpt 4873 ↾ cres 5260 Oncon0 5876 ‘cfv 6041 (class class class)co 6805 ωcom 7222 reccrdg 7666 ℝcr 10119 1c1 10121 + caddc 10123 < clt 10258 ≤ cle 10259 ℤcz 11561 ℤ≥cuz 11871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-n0 11477 df-z 11562 df-uz 11872 |
This theorem is referenced by: om2uzisoi 12939 unbenlem 15806 |
Copyright terms: Public domain | W3C validator |