![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om1bas | Structured version Visualization version GIF version |
Description: The base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
om1bas.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
om1bas.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
om1bas.y | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
om1bas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) |
Ref | Expression |
---|---|
om1bas | ⊢ (𝜑 → 𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om1bas.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) | |
2 | om1bas.o | . . . . 5 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
3 | eqidd 2771 | . . . . 5 ⊢ (𝜑 → {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) | |
4 | eqidd 2771 | . . . . 5 ⊢ (𝜑 → (*𝑝‘𝐽) = (*𝑝‘𝐽)) | |
5 | eqidd 2771 | . . . . 5 ⊢ (𝜑 → (𝐽 ^ko II) = (𝐽 ^ko II)) | |
6 | om1bas.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
7 | om1bas.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
8 | 2, 3, 4, 5, 6, 7 | om1val 23048 | . . . 4 ⊢ (𝜑 → 𝑂 = {〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉}) |
9 | 8 | fveq2d 6336 | . . 3 ⊢ (𝜑 → (Base‘𝑂) = (Base‘{〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉})) |
10 | 1, 9 | eqtrd 2804 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘{〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉})) |
11 | ovex 6822 | . . . 4 ⊢ (II Cn 𝐽) ∈ V | |
12 | 11 | rabex 4943 | . . 3 ⊢ {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} ∈ V |
13 | eqid 2770 | . . . 4 ⊢ {〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉} = {〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉} | |
14 | 13 | topgrpbas 16250 | . . 3 ⊢ ({𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} ∈ V → {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} = (Base‘{〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉})) |
15 | 12, 14 | ax-mp 5 | . 2 ⊢ {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} = (Base‘{〈(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}〉, 〈(+g‘ndx), (*𝑝‘𝐽)〉, 〈(TopSet‘ndx), (𝐽 ^ko II)〉}) |
16 | 10, 15 | syl6eqr 2822 | 1 ⊢ (𝜑 → 𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 {crab 3064 Vcvv 3349 {ctp 4318 〈cop 4320 ‘cfv 6031 (class class class)co 6792 0cc0 10137 1c1 10138 ndxcnx 16060 Basecbs 16063 +gcplusg 16148 TopSetcts 16154 TopOnctopon 20934 Cn ccn 21248 ^ko cxko 21584 IIcii 22897 *𝑝cpco 23018 Ω1 comi 23019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-plusg 16161 df-tset 16167 df-topon 20935 df-om1 23024 |
This theorem is referenced by: om1elbas 23050 om1plusg 23052 om1tset 23053 |
Copyright terms: Public domain | W3C validator |