![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om0r | Structured version Visualization version GIF version |
Description: Ordinal multiplication with zero. Proposition 8.18(1) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
om0r | ⊢ (𝐴 ∈ On → (∅ ·𝑜 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6823 | . . 3 ⊢ (𝑥 = ∅ → (∅ ·𝑜 𝑥) = (∅ ·𝑜 ∅)) | |
2 | 1 | eqeq1d 2763 | . 2 ⊢ (𝑥 = ∅ → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 ∅) = ∅)) |
3 | oveq2 6823 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 𝑦)) | |
4 | 3 | eqeq1d 2763 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 𝑦) = ∅)) |
5 | oveq2 6823 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 suc 𝑦)) | |
6 | 5 | eqeq1d 2763 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 suc 𝑦) = ∅)) |
7 | oveq2 6823 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 𝐴)) | |
8 | 7 | eqeq1d 2763 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 𝐴) = ∅)) |
9 | om0x 7771 | . 2 ⊢ (∅ ·𝑜 ∅) = ∅ | |
10 | oveq1 6822 | . . 3 ⊢ ((∅ ·𝑜 𝑦) = ∅ → ((∅ ·𝑜 𝑦) +𝑜 ∅) = (∅ +𝑜 ∅)) | |
11 | 0elon 5940 | . . . . 5 ⊢ ∅ ∈ On | |
12 | omsuc 7778 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ ·𝑜 suc 𝑦) = ((∅ ·𝑜 𝑦) +𝑜 ∅)) | |
13 | 11, 12 | mpan 708 | . . . 4 ⊢ (𝑦 ∈ On → (∅ ·𝑜 suc 𝑦) = ((∅ ·𝑜 𝑦) +𝑜 ∅)) |
14 | oa0 7768 | . . . . . . 7 ⊢ (∅ ∈ On → (∅ +𝑜 ∅) = ∅) | |
15 | 11, 14 | ax-mp 5 | . . . . . 6 ⊢ (∅ +𝑜 ∅) = ∅ |
16 | 15 | eqcomi 2770 | . . . . 5 ⊢ ∅ = (∅ +𝑜 ∅) |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝑦 ∈ On → ∅ = (∅ +𝑜 ∅)) |
18 | 13, 17 | eqeq12d 2776 | . . 3 ⊢ (𝑦 ∈ On → ((∅ ·𝑜 suc 𝑦) = ∅ ↔ ((∅ ·𝑜 𝑦) +𝑜 ∅) = (∅ +𝑜 ∅))) |
19 | 10, 18 | syl5ibr 236 | . 2 ⊢ (𝑦 ∈ On → ((∅ ·𝑜 𝑦) = ∅ → (∅ ·𝑜 suc 𝑦) = ∅)) |
20 | iuneq2 4690 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (∅ ·𝑜 𝑦) = ∅ → ∪ 𝑦 ∈ 𝑥 (∅ ·𝑜 𝑦) = ∪ 𝑦 ∈ 𝑥 ∅) | |
21 | iun0 4729 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝑥 ∅ = ∅ | |
22 | 20, 21 | syl6eq 2811 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (∅ ·𝑜 𝑦) = ∅ → ∪ 𝑦 ∈ 𝑥 (∅ ·𝑜 𝑦) = ∅) |
23 | vex 3344 | . . . . 5 ⊢ 𝑥 ∈ V | |
24 | omlim 7785 | . . . . . 6 ⊢ ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ ·𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·𝑜 𝑦)) | |
25 | 11, 24 | mpan 708 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ ·𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·𝑜 𝑦)) |
26 | 23, 25 | mpan 708 | . . . 4 ⊢ (Lim 𝑥 → (∅ ·𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·𝑜 𝑦)) |
27 | 26 | eqeq1d 2763 | . . 3 ⊢ (Lim 𝑥 → ((∅ ·𝑜 𝑥) = ∅ ↔ ∪ 𝑦 ∈ 𝑥 (∅ ·𝑜 𝑦) = ∅)) |
28 | 22, 27 | syl5ibr 236 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (∅ ·𝑜 𝑦) = ∅ → (∅ ·𝑜 𝑥) = ∅)) |
29 | 2, 4, 6, 8, 9, 19, 28 | tfinds 7226 | 1 ⊢ (𝐴 ∈ On → (∅ ·𝑜 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∀wral 3051 Vcvv 3341 ∅c0 4059 ∪ ciun 4673 Oncon0 5885 Lim wlim 5886 suc csuc 5887 (class class class)co 6815 +𝑜 coa 7728 ·𝑜 comu 7729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-oadd 7735 df-omul 7736 |
This theorem is referenced by: omord 7820 omwordi 7823 om00 7827 odi 7831 omass 7832 oeoa 7849 omxpenlem 8229 |
Copyright terms: Public domain | W3C validator |