![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > olm11 | Structured version Visualization version GIF version |
Description: The meet of an ortholattice element with one equals itself. (chm1i 28649 analog.) (Contributed by NM, 22-May-2012.) |
Ref | Expression |
---|---|
olm1.b | ⊢ 𝐵 = (Base‘𝐾) |
olm1.m | ⊢ ∧ = (meet‘𝐾) |
olm1.u | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
olm11 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olop 35016 | . . . . . . 7 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
2 | 1 | adantr 466 | . . . . . 6 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
3 | eqid 2770 | . . . . . . 7 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
4 | olm1.u | . . . . . . 7 ⊢ 1 = (1.‘𝐾) | |
5 | eqid 2770 | . . . . . . 7 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | 3, 4, 5 | opoc1 35004 | . . . . . 6 ⊢ (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾)) |
7 | 2, 6 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾)) |
8 | 7 | oveq2d 6808 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾))) |
9 | olm1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
10 | 9, 5 | opoccl 34996 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
11 | 1, 10 | sylan 561 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
12 | eqid 2770 | . . . . . 6 ⊢ (join‘𝐾) = (join‘𝐾) | |
13 | 9, 12, 3 | olj01 35027 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋)) |
14 | 11, 13 | syldan 571 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋)) |
15 | 8, 14 | eqtrd 2804 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = ((oc‘𝐾)‘𝑋)) |
16 | 15 | fveq2d 6336 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))) |
17 | 9, 4 | op1cl 34987 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
18 | 2, 17 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
19 | olm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
20 | 9, 12, 19, 5 | oldmj4 35026 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 ∧ 1 )) |
21 | 18, 20 | mpd3an3 1572 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 ∧ 1 )) |
22 | 9, 5 | opococ 34997 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
23 | 1, 22 | sylan 561 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
24 | 16, 21, 23 | 3eqtr3d 2812 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 occoc 16156 joincjn 17151 meetcmee 17152 0.cp0 17244 1.cp1 17245 OPcops 34974 OLcol 34976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-preset 17135 df-poset 17153 df-lub 17181 df-glb 17182 df-join 17183 df-meet 17184 df-p0 17246 df-p1 17247 df-lat 17253 df-oposet 34978 df-ol 34980 |
This theorem is referenced by: olm12 35030 lhpmcvr3 35826 trljat1 35968 trljat2 35969 cdlemc1 35993 cdlemc6 35998 cdleme0cp 36016 cdleme0cq 36017 cdleme1 36029 cdleme4 36040 cdleme5 36042 cdleme8 36052 cdleme9 36055 cdleme10 36056 cdleme20c 36113 cdleme20j 36120 cdleme22e 36146 cdleme22eALTN 36147 cdleme30a 36180 cdleme35b 36252 cdleme35e 36255 cdleme42a 36273 trlcoabs2N 36524 trlcolem 36528 cdlemi1 36620 cdlemk4 36636 dia2dimlem1 36867 cdlemn10 37009 dihglbcpreN 37103 |
Copyright terms: Public domain | W3C validator |