![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > olj02 | Structured version Visualization version GIF version |
Description: An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012.) |
Ref | Expression |
---|---|
olj0.b | ⊢ 𝐵 = (Base‘𝐾) |
olj0.j | ⊢ ∨ = (join‘𝐾) |
olj0.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
olj02 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ollat 35022 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
2 | 1 | adantr 466 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
3 | olop 35023 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
4 | olj0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | olj0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
6 | 4, 5 | op0cl 34993 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝐾 ∈ OL → 0 ∈ 𝐵) |
8 | 7 | adantr 466 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
9 | simpr 471 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | olj0.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
11 | 4, 10 | latjcom 17267 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = (𝑋 ∨ 0 )) |
12 | 2, 8, 9, 11 | syl3anc 1476 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = (𝑋 ∨ 0 )) |
13 | 4, 10, 5 | olj01 35034 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
14 | 12, 13 | eqtrd 2805 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 joincjn 17152 0.cp0 17245 Latclat 17253 OPcops 34981 OLcol 34983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-preset 17136 df-poset 17154 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-lat 17254 df-oposet 34985 df-ol 34987 |
This theorem is referenced by: atle 35244 athgt 35264 pmapjat1 35661 atmod1i1m 35666 llnexchb2lem 35676 lhp2at0 35840 lhpelim 35845 4atex2-0aOLDN 35886 cdleme2 36037 cdleme15b 36084 cdleme22cN 36151 cdleme22d 36152 cdleme35d 36261 cdlemeg46frv 36334 cdlemg2fv2 36409 cdlemg2m 36413 cdlemg10bALTN 36445 cdlemh2 36625 cdlemh 36626 cdlemk9 36648 cdlemk9bN 36649 dia2dimlem1 36874 |
Copyright terms: Public domain | W3C validator |