![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > olj01 | Structured version Visualization version GIF version |
Description: An ortholattice element joined with zero equals itself. (chj0 28690 analog.) (Contributed by NM, 19-Oct-2011.) |
Ref | Expression |
---|---|
olj0.b | ⊢ 𝐵 = (Base‘𝐾) |
olj0.j | ⊢ ∨ = (join‘𝐾) |
olj0.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
olj01 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olop 35016 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
2 | olj0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | olj0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
4 | 2, 3 | op0cl 34986 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝐾 ∈ OL → 0 ∈ 𝐵) |
6 | 5 | adantr 466 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
7 | eqid 2770 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | ollat 35015 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
9 | 8 | 3ad2ant1 1126 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝐾 ∈ Lat) |
10 | olj0.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
11 | 2, 10 | latjcl 17258 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) ∈ 𝐵) |
12 | 8, 11 | syl3an1 1165 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) ∈ 𝐵) |
13 | simp2 1130 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
14 | 2, 7 | latref 17260 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
15 | 8, 14 | sylan 561 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
16 | 15 | 3adant3 1125 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
17 | 2, 7, 3 | op0le 34988 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
18 | 1, 17 | sylan 561 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
19 | 18 | 3adant3 1125 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
20 | simp3 1131 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 0 ∈ 𝐵) | |
21 | 2, 7, 10 | latjle12 17269 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 0 (le‘𝐾)𝑋) ↔ (𝑋 ∨ 0 )(le‘𝐾)𝑋)) |
22 | 9, 13, 20, 13, 21 | syl13anc 1477 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 0 (le‘𝐾)𝑋) ↔ (𝑋 ∨ 0 )(le‘𝐾)𝑋)) |
23 | 16, 19, 22 | mpbi2and 683 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 )(le‘𝐾)𝑋) |
24 | 2, 7, 10 | latlej1 17267 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 0 )) |
25 | 8, 24 | syl3an1 1165 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 0 )) |
26 | 2, 7, 9, 12, 13, 23, 25 | latasymd 17264 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
27 | 6, 26 | mpd3an3 1572 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 lecple 16155 joincjn 17151 0.cp0 17244 Latclat 17252 OPcops 34974 OLcol 34976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-preset 17135 df-poset 17153 df-lub 17181 df-glb 17182 df-join 17183 df-meet 17184 df-p0 17246 df-lat 17253 df-oposet 34978 df-ol 34980 |
This theorem is referenced by: olj02 35028 olm11 35029 omllaw3 35047 omlspjN 35063 2at0mat0 35326 lhp2at0nle 35836 lhple 35843 cdlemc6 35998 cdleme3c 36032 cdleme7e 36049 cdlemednpq 36101 cdlemefrs29pre00 36197 cdlemefrs29bpre0 36198 cdlemefrs29cpre1 36200 cdleme32fva 36239 cdleme42ke 36287 cdlemg12e 36449 cdlemg31d 36502 trljco 36542 cdlemkid2 36726 dihvalcqat 37042 dihmeetlem7N 37113 dihjatc1 37114 djh01 37215 |
Copyright terms: Public domain | W3C validator |