![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oldmj4 | Structured version Visualization version GIF version |
Description: De Morgan's law for join in an ortholattice. (chdmj4 28731 analog.) (Contributed by NM, 7-Nov-2011.) |
Ref | Expression |
---|---|
oldmm1.b | ⊢ 𝐵 = (Base‘𝐾) |
oldmm1.j | ⊢ ∨ = (join‘𝐾) |
oldmm1.m | ⊢ ∧ = (meet‘𝐾) |
oldmm1.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
oldmj4 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌))) = (𝑋 ∧ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olop 35023 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
2 | oldmm1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
3 | oldmm1.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
4 | 2, 3 | opoccl 35003 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
5 | 1, 4 | sylan 569 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
6 | 5 | 3adant2 1125 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
7 | oldmm1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
8 | oldmm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
9 | 2, 7, 8, 3 | oldmj2 35031 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌))) = (𝑋 ∧ ( ⊥ ‘( ⊥ ‘𝑌)))) |
10 | 6, 9 | syld3an3 1515 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌))) = (𝑋 ∧ ( ⊥ ‘( ⊥ ‘𝑌)))) |
11 | 2, 3 | opococ 35004 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
12 | 1, 11 | sylan 569 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
13 | 12 | 3adant2 1125 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
14 | 13 | oveq2d 6812 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘( ⊥ ‘𝑌))) = (𝑋 ∧ 𝑌)) |
15 | 10, 14 | eqtrd 2805 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌))) = (𝑋 ∧ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 occoc 16157 joincjn 17152 meetcmee 17153 OPcops 34981 OLcol 34983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-preset 17136 df-poset 17154 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-lat 17254 df-oposet 34985 df-ol 34987 |
This theorem is referenced by: olm11 35036 latmassOLD 35038 cmtcomlemN 35057 omlfh3N 35068 |
Copyright terms: Public domain | W3C validator |