![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > olci | Structured version Visualization version GIF version |
Description: Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
Ref | Expression |
---|---|
orci.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
olci | ⊢ (𝜓 ∨ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orci.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (¬ 𝜓 → 𝜑) |
3 | 2 | orri 390 | 1 ⊢ (𝜓 ∨ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 |
This theorem is referenced by: falortru 1661 opthhausdorff 5128 sucidg 5965 kmlem2 9186 sornom 9312 leid 10346 pnf0xnn0 11583 xrleid 12197 xmul01 12311 bcn1 13315 odd2np1lem 15287 lcm0val 15530 lcmfunsnlem2lem1 15574 lcmfunsnlem2 15576 coprmprod 15598 coprmproddvdslem 15599 prmrec 15849 sratset 19407 srads 19409 m2detleib 20660 zclmncvs 23169 itg0 23766 itgz 23767 coemullem 24226 ftalem5 25024 chp1 25114 prmorcht 25125 pclogsum 25161 logexprlim 25171 bpos1 25229 pntpbnd1 25496 axlowdimlem16 26058 usgrexmpldifpr 26371 cusgrsizeindb1 26578 pthdlem2 26896 clwwlkn0OLD 27179 ex-or 27611 plymulx0 30955 bj-0eltag 33291 bj-inftyexpidisj 33427 mblfinlem2 33779 volsupnfl 33786 ifpdfor 38330 ifpim1 38334 ifpnot 38335 ifpid2 38336 ifpim2 38337 ifpim1g 38367 ifpbi1b 38369 icccncfext 40622 fourierdlem103 40948 fourierdlem104 40949 etransclem24 40997 etransclem35 41008 abnotataxb 41608 dandysum2p2e4 41690 sbgoldbo 42204 zlmodzxzldeplem 42816 aacllem 43079 |
Copyright terms: Public domain | W3C validator |