![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oiiso | Structured version Visualization version GIF version |
Description: The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
Ref | Expression |
---|---|
oicl.1 | ⊢ 𝐹 = OrdIso(𝑅, 𝐴) |
Ref | Expression |
---|---|
oiiso | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exse 5182 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) | |
2 | oicl.1 | . . . 4 ⊢ 𝐹 = OrdIso(𝑅, 𝐴) | |
3 | 2 | ordtype 8553 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
4 | 3 | ancoms 468 | . 2 ⊢ ((𝑅 Se 𝐴 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
5 | 1, 4 | sylan 489 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 E cep 5132 Se wse 5175 We wwe 5176 dom cdm 5218 Isom wiso 6002 OrdIsocoi 8530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-wrecs 7527 df-recs 7588 df-oi 8531 |
This theorem is referenced by: oien 8559 wofib 8566 cantnfle 8681 cantnflt 8682 cantnflt2 8683 cantnfp1lem3 8690 cantnflem1b 8696 cantnflem1d 8698 cantnflem1 8699 wemapwe 8707 cnfcomlem 8709 cnfcom 8710 cnfcom3lem 8713 infxpenlem 8949 finnisoeu 9049 dfac12lem2 9079 cofsmo 9204 fpwwe2lem6 9570 fpwwe2lem7 9571 fpwwe2lem9 9573 pwfseqlem5 9598 fz1isolem 13358 |
Copyright terms: Public domain | W3C validator |