MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiiso Structured version   Visualization version   GIF version

Theorem oiiso 8558
Description: The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oiiso ((𝐴𝑉𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))

Proof of Theorem oiiso
StepHypRef Expression
1 exse 5182 . 2 (𝐴𝑉𝑅 Se 𝐴)
2 oicl.1 . . . 4 𝐹 = OrdIso(𝑅, 𝐴)
32ordtype 8553 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
43ancoms 468 . 2 ((𝑅 Se 𝐴𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
51, 4sylan 489 1 ((𝐴𝑉𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103   E cep 5132   Se wse 5175   We wwe 5176  dom cdm 5218   Isom wiso 6002  OrdIsocoi 8530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-wrecs 7527  df-recs 7588  df-oi 8531
This theorem is referenced by:  oien  8559  wofib  8566  cantnfle  8681  cantnflt  8682  cantnflt2  8683  cantnfp1lem3  8690  cantnflem1b  8696  cantnflem1d  8698  cantnflem1  8699  wemapwe  8707  cnfcomlem  8709  cnfcom  8710  cnfcom3lem  8713  infxpenlem  8949  finnisoeu  9049  dfac12lem2  9079  cofsmo  9204  fpwwe2lem6  9570  fpwwe2lem7  9571  fpwwe2lem9  9573  pwfseqlem5  9598  fz1isolem  13358
  Copyright terms: Public domain W3C validator