![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oif | Structured version Visualization version GIF version |
Description: The order isomorphism of the well-order 𝑅 on 𝐴 is a function. (Contributed by Mario Carneiro, 23-May-2015.) |
Ref | Expression |
---|---|
oicl.1 | ⊢ 𝐹 = OrdIso(𝑅, 𝐴) |
Ref | Expression |
---|---|
oif | ⊢ 𝐹:dom 𝐹⟶𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . . 5 ⊢ recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) = recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) | |
2 | eqid 2651 | . . . . 5 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
3 | eqid 2651 | . . . . 5 ⊢ (ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) = (ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) | |
4 | 1, 2, 3 | ordtypecbv 8463 | . . . 4 ⊢ recs((𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) |
5 | eqid 2651 | . . . 4 ⊢ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) “ 𝑥)𝑧𝑅𝑡} = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) “ 𝑥)𝑧𝑅𝑡} | |
6 | oicl.1 | . . . 4 ⊢ 𝐹 = OrdIso(𝑅, 𝐴) | |
7 | simpl 472 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 We 𝐴) | |
8 | simpr 476 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Se 𝐴) | |
9 | 4, 2, 3, 5, 6, 7, 8 | ordtypelem5 8468 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → (Ord dom 𝐹 ∧ 𝐹:dom 𝐹⟶𝐴)) |
10 | 9 | simprd 478 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹:dom 𝐹⟶𝐴) |
11 | f0 6124 | . . 3 ⊢ ∅:∅⟶𝐴 | |
12 | 6 | oi0 8474 | . . . 4 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 = ∅) |
13 | 12 | dmeqd 5358 | . . . . 5 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → dom 𝐹 = dom ∅) |
14 | dm0 5371 | . . . . 5 ⊢ dom ∅ = ∅ | |
15 | 13, 14 | syl6eq 2701 | . . . 4 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → dom 𝐹 = ∅) |
16 | 12, 15 | feq12d 6071 | . . 3 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹:dom 𝐹⟶𝐴 ↔ ∅:∅⟶𝐴)) |
17 | 11, 16 | mpbiri 248 | . 2 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹:dom 𝐹⟶𝐴) |
18 | 10, 17 | pm2.61i 176 | 1 ⊢ 𝐹:dom 𝐹⟶𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 = wceq 1523 ∀wral 2941 ∃wrex 2942 {crab 2945 Vcvv 3231 ∅c0 3948 class class class wbr 4685 ↦ cmpt 4762 Se wse 5100 We wwe 5101 dom cdm 5143 ran crn 5144 “ cima 5146 Ord word 5760 Oncon0 5761 ⟶wf 5922 ℩crio 6650 recscrecs 7512 OrdIsocoi 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-wrecs 7452 df-recs 7513 df-oi 8456 |
This theorem is referenced by: oismo 8486 cantnfle 8606 cantnflt 8607 cantnfres 8612 cantnfp1lem3 8615 cantnflem1b 8621 cantnflem1 8624 wemapwe 8632 cnfcomlem 8634 cnfcom 8635 cnfcom3lem 8638 cnfcom3 8639 hsmexlem1 9286 hsmexlem2 9287 fpwwe2lem8 9497 |
Copyright terms: Public domain | W3C validator |