![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpgrp | Structured version Visualization version GIF version |
Description: An left ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
Ref | Expression |
---|---|
ogrpgrp | ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isogrp 30036 | . 2 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
2 | 1 | simplbi 479 | 1 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2144 Grpcgrp 17629 oMndcomnd 30031 oGrpcogrp 30032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-v 3351 df-in 3728 df-ogrp 30034 |
This theorem is referenced by: ogrpinv0le 30050 ogrpsub 30051 ogrpaddlt 30052 ogrpaddltbi 30053 ogrpaddltrbid 30055 ogrpsublt 30056 ogrpinv0lt 30057 ogrpinvlt 30058 isarchi3 30075 archirng 30076 archirngz 30077 archiabllem1a 30079 archiabllem1b 30080 archiabllem1 30081 archiabllem2a 30082 archiabllem2c 30083 archiabllem2b 30084 archiabllem2 30085 |
Copyright terms: Public domain | W3C validator |