Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddltrbid Structured version   Visualization version   GIF version

Theorem ogrpaddltrbid 30001
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0 𝐵 = (Base‘𝐺)
ogrpaddlt.1 < = (lt‘𝐺)
ogrpaddlt.2 + = (+g𝐺)
ogrpaddltrd.1 (𝜑𝐺𝑉)
ogrpaddltrd.2 (𝜑 → (oppg𝐺) ∈ oGrp)
ogrpaddltrd.3 (𝜑𝑋𝐵)
ogrpaddltrd.4 (𝜑𝑌𝐵)
ogrpaddltrd.5 (𝜑𝑍𝐵)
Assertion
Ref Expression
ogrpaddltrbid (𝜑 → (𝑋 < 𝑌 ↔ (𝑍 + 𝑋) < (𝑍 + 𝑌)))

Proof of Theorem ogrpaddltrbid
StepHypRef Expression
1 ogrpaddlt.0 . . 3 𝐵 = (Base‘𝐺)
2 ogrpaddlt.1 . . 3 < = (lt‘𝐺)
3 ogrpaddlt.2 . . 3 + = (+g𝐺)
4 ogrpaddltrd.1 . . . 4 (𝜑𝐺𝑉)
54adantr 472 . . 3 ((𝜑𝑋 < 𝑌) → 𝐺𝑉)
6 ogrpaddltrd.2 . . . 4 (𝜑 → (oppg𝐺) ∈ oGrp)
76adantr 472 . . 3 ((𝜑𝑋 < 𝑌) → (oppg𝐺) ∈ oGrp)
8 ogrpaddltrd.3 . . . 4 (𝜑𝑋𝐵)
98adantr 472 . . 3 ((𝜑𝑋 < 𝑌) → 𝑋𝐵)
10 ogrpaddltrd.4 . . . 4 (𝜑𝑌𝐵)
1110adantr 472 . . 3 ((𝜑𝑋 < 𝑌) → 𝑌𝐵)
12 ogrpaddltrd.5 . . . 4 (𝜑𝑍𝐵)
1312adantr 472 . . 3 ((𝜑𝑋 < 𝑌) → 𝑍𝐵)
14 simpr 479 . . 3 ((𝜑𝑋 < 𝑌) → 𝑋 < 𝑌)
151, 2, 3, 5, 7, 9, 11, 13, 14ogrpaddltrd 30000 . 2 ((𝜑𝑋 < 𝑌) → (𝑍 + 𝑋) < (𝑍 + 𝑌))
164adantr 472 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝐺𝑉)
176adantr 472 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (oppg𝐺) ∈ oGrp)
18 ogrpgrp 29983 . . . . . . 7 ((oppg𝐺) ∈ oGrp → (oppg𝐺) ∈ Grp)
196, 18syl 17 . . . . . 6 (𝜑 → (oppg𝐺) ∈ Grp)
2019adantr 472 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (oppg𝐺) ∈ Grp)
218adantr 472 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑋𝐵)
2212adantr 472 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑍𝐵)
23 eqid 2748 . . . . . . 7 (oppg𝐺) = (oppg𝐺)
24 eqid 2748 . . . . . . 7 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
253, 23, 24oppgplus 17950 . . . . . 6 (𝑋(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑋)
2623, 1oppgbas 17952 . . . . . . 7 𝐵 = (Base‘(oppg𝐺))
2726, 24grpcl 17602 . . . . . 6 (((oppg𝐺) ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋(+g‘(oppg𝐺))𝑍) ∈ 𝐵)
2825, 27syl5eqelr 2832 . . . . 5 (((oppg𝐺) ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑍 + 𝑋) ∈ 𝐵)
2920, 21, 22, 28syl3anc 1463 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑋) ∈ 𝐵)
3010adantr 472 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑌𝐵)
313, 23, 24oppgplus 17950 . . . . . 6 (𝑌(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑌)
3226, 24grpcl 17602 . . . . . 6 (((oppg𝐺) ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌(+g‘(oppg𝐺))𝑍) ∈ 𝐵)
3331, 32syl5eqelr 2832 . . . . 5 (((oppg𝐺) ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑍 + 𝑌) ∈ 𝐵)
3420, 30, 22, 33syl3anc 1463 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑌) ∈ 𝐵)
3523oppggrpb 17959 . . . . . 6 (𝐺 ∈ Grp ↔ (oppg𝐺) ∈ Grp)
3620, 35sylibr 224 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝐺 ∈ Grp)
37 eqid 2748 . . . . . 6 (invg𝐺) = (invg𝐺)
381, 37grpinvcl 17639 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
3936, 22, 38syl2anc 696 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
40 simpr 479 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑋) < (𝑍 + 𝑌))
411, 2, 3, 16, 17, 29, 34, 39, 40ogrpaddltrd 30000 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) < (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
42 eqid 2748 . . . . . . 7 (0g𝐺) = (0g𝐺)
431, 3, 42, 37grplinv 17640 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
4436, 22, 43syl2anc 696 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
4544oveq1d 6816 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = ((0g𝐺) + 𝑋))
461, 3grpass 17603 . . . . 5 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
4736, 39, 22, 21, 46syl13anc 1465 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
481, 3, 42grplid 17624 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
4936, 21, 48syl2anc 696 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((0g𝐺) + 𝑋) = 𝑋)
5045, 47, 493eqtr3d 2790 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
5144oveq1d 6816 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = ((0g𝐺) + 𝑌))
521, 3grpass 17603 . . . . 5 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
5336, 39, 22, 30, 52syl13anc 1465 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
541, 3, 42grplid 17624 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
5536, 30, 54syl2anc 696 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((0g𝐺) + 𝑌) = 𝑌)
5651, 53, 553eqtr3d 2790 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
5741, 50, 563brtr3d 4823 . 2 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑋 < 𝑌)
5815, 57impbida 913 1 (𝜑 → (𝑋 < 𝑌 ↔ (𝑍 + 𝑋) < (𝑍 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1620  wcel 2127   class class class wbr 4792  cfv 6037  (class class class)co 6801  Basecbs 16030  +gcplusg 16114  0gc0g 16273  ltcplt 17113  Grpcgrp 17594  invgcminusg 17595  oppgcoppg 17946  oGrpcogrp 29978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-tpos 7509  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-dec 11657  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-plusg 16127  df-ple 16134  df-0g 16275  df-plt 17130  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-grp 17597  df-minusg 17598  df-oppg 17947  df-omnd 29979  df-ogrp 29980
This theorem is referenced by:  ogrpinvlt  30004
  Copyright terms: Public domain W3C validator