Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddlt Structured version   Visualization version   GIF version

Theorem ogrpaddlt 29846
Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0 𝐵 = (Base‘𝐺)
ogrpaddlt.1 < = (lt‘𝐺)
ogrpaddlt.2 + = (+g𝐺)
Assertion
Ref Expression
ogrpaddlt ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) < (𝑌 + 𝑍))

Proof of Theorem ogrpaddlt
StepHypRef Expression
1 isogrp 29830 . . . . 5 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simprbi 479 . . . 4 (𝐺 ∈ oGrp → 𝐺 ∈ oMnd)
323ad2ant1 1102 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ oMnd)
4 simp2 1082 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋𝐵𝑌𝐵𝑍𝐵))
5 simp1 1081 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ oGrp)
6 simp21 1114 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝐵)
7 simp22 1115 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
8 simp3 1083 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
9 eqid 2651 . . . . . 6 (le‘𝐺) = (le‘𝐺)
10 ogrpaddlt.1 . . . . . 6 < = (lt‘𝐺)
119, 10pltle 17008 . . . . 5 ((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝐺)𝑌))
1211imp 444 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝐺)𝑌)
135, 6, 7, 8, 12syl31anc 1369 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝐺)𝑌)
14 ogrpaddlt.0 . . . 4 𝐵 = (Base‘𝐺)
15 ogrpaddlt.2 . . . 4 + = (+g𝐺)
1614, 9, 15omndadd 29834 . . 3 ((𝐺 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋(le‘𝐺)𝑌) → (𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍))
173, 4, 13, 16syl3anc 1366 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍))
1810pltne 17009 . . . . 5 ((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋𝑌))
1918imp 444 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
205, 6, 7, 8, 19syl31anc 1369 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
21 ogrpgrp 29831 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
2214, 15grprcan 17502 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))
2322biimpd 219 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
2421, 23sylan 487 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
2524necon3d 2844 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝑌 → (𝑋 + 𝑍) ≠ (𝑌 + 𝑍)))
26253impia 1280 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝑌) → (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))
275, 4, 20, 26syl3anc 1366 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))
28 ovex 6718 . . . 4 (𝑋 + 𝑍) ∈ V
29 ovex 6718 . . . 4 (𝑌 + 𝑍) ∈ V
309, 10pltval 17007 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋 + 𝑍) ∈ V ∧ (𝑌 + 𝑍) ∈ V) → ((𝑋 + 𝑍) < (𝑌 + 𝑍) ↔ ((𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍) ∧ (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))))
3128, 29, 30mp3an23 1456 . . 3 (𝐺 ∈ oGrp → ((𝑋 + 𝑍) < (𝑌 + 𝑍) ↔ ((𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍) ∧ (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))))
32313ad2ant1 1102 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 + 𝑍) < (𝑌 + 𝑍) ↔ ((𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍) ∧ (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))))
3317, 27, 32mpbir2and 977 1 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) < (𝑌 + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  lecple 15995  ltcplt 16988  Grpcgrp 17469  oMndcomnd 29825  oGrpcogrp 29826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-riota 6651  df-ov 6693  df-0g 16149  df-plt 17005  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-omnd 29827  df-ogrp 29828
This theorem is referenced by:  ogrpaddltbi  29847  ogrpaddltrd  29848  ogrpinv0lt  29851  isarchi3  29869  archirngz  29871  archiabllem1b  29874  archiabllem2c  29877  ofldchr  29942
  Copyright terms: Public domain W3C validator