MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oftpos Structured version   Visualization version   GIF version

Theorem oftpos 20460
Description: The transposition of the value of a function operation for two functions is the value of the function operation for the two functions transposed. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Assertion
Ref Expression
oftpos ((𝐹𝑉𝐺𝑊) → tpos (𝐹𝑓 𝑅𝐺) = (tpos 𝐹𝑓 𝑅tpos 𝐺))

Proof of Theorem oftpos
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3352 . . . 4 (𝐹𝑉𝐹 ∈ V)
21adantr 472 . . 3 ((𝐹𝑉𝐺𝑊) → 𝐹 ∈ V)
3 elex 3352 . . . 4 (𝐺𝑊𝐺 ∈ V)
43adantl 473 . . 3 ((𝐹𝑉𝐺𝑊) → 𝐺 ∈ V)
5 funmpt 6087 . . . 4 Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
65a1i 11 . . 3 ((𝐹𝑉𝐺𝑊) → Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
7 dftpos4 7540 . . . 4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
8 tposexg 7535 . . . . 5 (𝐹𝑉 → tpos 𝐹 ∈ V)
98adantr 472 . . . 4 ((𝐹𝑉𝐺𝑊) → tpos 𝐹 ∈ V)
107, 9syl5eqelr 2844 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V)
11 dftpos4 7540 . . . 4 tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
12 tposexg 7535 . . . . 5 (𝐺𝑊 → tpos 𝐺 ∈ V)
1312adantl 473 . . . 4 ((𝐹𝑉𝐺𝑊) → tpos 𝐺 ∈ V)
1411, 13syl5eqelr 2844 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V)
15 ofco2 20459 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ∧ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V ∧ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V)) → ((𝐹𝑓 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∘𝑓 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))))
162, 4, 6, 10, 14, 15syl23anc 1484 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹𝑓 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∘𝑓 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))))
17 dftpos4 7540 . 2 tpos (𝐹𝑓 𝑅𝐺) = ((𝐹𝑓 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
187, 11oveq12i 6825 . 2 (tpos 𝐹𝑓 𝑅tpos 𝐺) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∘𝑓 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
1916, 17, 183eqtr4g 2819 1 ((𝐹𝑉𝐺𝑊) → tpos (𝐹𝑓 𝑅𝐺) = (tpos 𝐹𝑓 𝑅tpos 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cun 3713  c0 4058  {csn 4321   cuni 4588  cmpt 4881   × cxp 5264  ccnv 5265  ccom 5270  Fun wfun 6043  (class class class)co 6813  𝑓 cof 7060  tpos ctpos 7520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-tpos 7521
This theorem is referenced by:  mattposvs  20463
  Copyright terms: Public domain W3C validator