MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofsubge0 Structured version   Visualization version   GIF version

Theorem ofsubge0 11232
Description: Function analogue of subge0 10754. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofsubge0 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘𝑟 ≤ (𝐹𝑓𝐺) ↔ 𝐺𝑟𝐹))

Proof of Theorem ofsubge0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1132 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹:𝐴⟶ℝ)
21ffvelrnda 6524 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
3 simp3 1133 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺:𝐴⟶ℝ)
43ffvelrnda 6524 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
52, 4subge0d 10830 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (0 ≤ ((𝐹𝑥) − (𝐺𝑥)) ↔ (𝐺𝑥) ≤ (𝐹𝑥)))
65ralbidva 3124 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (∀𝑥𝐴 0 ≤ ((𝐹𝑥) − (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝐺𝑥) ≤ (𝐹𝑥)))
7 0cn 10245 . . . 4 0 ∈ ℂ
8 fnconstg 6255 . . . 4 (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴)
97, 8mp1i 13 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐴 × {0}) Fn 𝐴)
10 ffn 6207 . . . . 5 (𝐹:𝐴⟶ℝ → 𝐹 Fn 𝐴)
111, 10syl 17 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹 Fn 𝐴)
12 ffn 6207 . . . . 5 (𝐺:𝐴⟶ℝ → 𝐺 Fn 𝐴)
133, 12syl 17 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺 Fn 𝐴)
14 simp1 1131 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐴𝑉)
15 inidm 3966 . . . 4 (𝐴𝐴) = 𝐴
1611, 13, 14, 14, 15offn 7075 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐹𝑓𝐺) Fn 𝐴)
17 c0ex 10247 . . . . 5 0 ∈ V
1817fvconst2 6635 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
1918adantl 473 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
20 eqidd 2762 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
21 eqidd 2762 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
2211, 13, 14, 14, 15, 20, 21ofval 7073 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → ((𝐹𝑓𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
239, 16, 14, 14, 15, 19, 22ofrfval 7072 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘𝑟 ≤ (𝐹𝑓𝐺) ↔ ∀𝑥𝐴 0 ≤ ((𝐹𝑥) − (𝐺𝑥))))
2413, 11, 14, 14, 15, 21, 20ofrfval 7072 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐺𝑟𝐹 ↔ ∀𝑥𝐴 (𝐺𝑥) ≤ (𝐹𝑥)))
256, 23, 243bitr4d 300 1 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘𝑟 ≤ (𝐹𝑓𝐺) ↔ 𝐺𝑟𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wral 3051  {csn 4322   class class class wbr 4805   × cxp 5265   Fn wfn 6045  wf 6046  cfv 6050  (class class class)co 6815  𝑓 cof 7062  𝑟 cofr 7063  cc 10147  cr 10148  0cc0 10149  cle 10288  cmin 10479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-po 5188  df-so 5189  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-ofr 7065  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator