![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofreq | Structured version Visualization version GIF version |
Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ofreq | ⊢ (𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 4806 | . . . 4 ⊢ (𝑅 = 𝑆 → ((𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ (𝑓‘𝑥)𝑆(𝑔‘𝑥))) | |
2 | 1 | ralbidv 3124 | . . 3 ⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑆(𝑔‘𝑥))) |
3 | 2 | opabbidv 4868 | . 2 ⊢ (𝑅 = 𝑆 → {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑆(𝑔‘𝑥)}) |
4 | df-ofr 7063 | . 2 ⊢ ∘𝑟 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} | |
5 | df-ofr 7063 | . 2 ⊢ ∘𝑟 𝑆 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑆(𝑔‘𝑥)} | |
6 | 3, 4, 5 | 3eqtr4g 2819 | 1 ⊢ (𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∀wral 3050 ∩ cin 3714 class class class wbr 4804 {copab 4864 dom cdm 5266 ‘cfv 6049 ∘𝑟 cofr 7061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-ral 3055 df-br 4805 df-opab 4865 df-ofr 7063 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |