MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofnegsub Structured version   Visualization version   GIF version

Theorem ofnegsub 11220
Description: Function analogue of negsub 10531. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofnegsub ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹𝑓 + ((𝐴 × {-1}) ∘𝑓 · 𝐺)) = (𝐹𝑓𝐺))

Proof of Theorem ofnegsub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1130 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴𝑉)
2 simp2 1131 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
3 ffn 6185 . . 3 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
42, 3syl 17 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴)
5 ax-1cn 10196 . . . . 5 1 ∈ ℂ
65negcli 10551 . . . 4 -1 ∈ ℂ
7 fnconstg 6233 . . . 4 (-1 ∈ ℂ → (𝐴 × {-1}) Fn 𝐴)
86, 7mp1i 13 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐴 × {-1}) Fn 𝐴)
9 simp3 1132 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ)
10 ffn 6185 . . . 4 (𝐺:𝐴⟶ℂ → 𝐺 Fn 𝐴)
119, 10syl 17 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴)
12 inidm 3971 . . 3 (𝐴𝐴) = 𝐴
138, 11, 1, 1, 12offn 7055 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐴 × {-1}) ∘𝑓 · 𝐺) Fn 𝐴)
144, 11, 1, 1, 12offn 7055 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹𝑓𝐺) Fn 𝐴)
15 eqidd 2772 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
166a1i 11 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → -1 ∈ ℂ)
17 eqidd 2772 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
181, 16, 11, 17ofc1 7067 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐴 × {-1}) ∘𝑓 · 𝐺)‘𝑥) = (-1 · (𝐺𝑥)))
199ffvelrnda 6502 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
2019mulm1d 10684 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (-1 · (𝐺𝑥)) = -(𝐺𝑥))
2118, 20eqtrd 2805 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐴 × {-1}) ∘𝑓 · 𝐺)‘𝑥) = -(𝐺𝑥))
222ffvelrnda 6502 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
2322, 19negsubd 10600 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹𝑥) + -(𝐺𝑥)) = ((𝐹𝑥) − (𝐺𝑥)))
244, 11, 1, 1, 12, 15, 17ofval 7053 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹𝑓𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
2523, 24eqtr4d 2808 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹𝑥) + -(𝐺𝑥)) = ((𝐹𝑓𝐺)‘𝑥))
261, 4, 13, 14, 15, 21, 25offveq 7065 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹𝑓 + ((𝐴 × {-1}) ∘𝑓 · 𝐺)) = (𝐹𝑓𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  {csn 4316   × cxp 5247   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  𝑓 cof 7042  cc 10136  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468  -cneg 10469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-ltxr 10281  df-sub 10470  df-neg 10471
This theorem is referenced by:  i1fsub  23695  itg1sub  23696  plysub  24195  coesub  24233  dgrsub  24248  basellem9  25036  expgrowth  39060
  Copyright terms: Public domain W3C validator