MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmres Structured version   Visualization version   GIF version

Theorem ofmres 7329
Description: Equivalent expressions for a restriction of the function operation map. Unlike 𝑓 𝑅 which is a proper class, ( ∘𝑓 𝑅 ∣ ‘(𝐴 × 𝐵)) can be a set by ofmresex 7330, allowing it to be used as a function or structure argument. By ofmresval 7075, the restricted operation map values are the same as the original values, allowing theorems for 𝑓 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.)
Assertion
Ref Expression
ofmres ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔))
Distinct variable groups:   𝑓,𝑔,𝐴   𝐵,𝑓,𝑔   𝑅,𝑓,𝑔

Proof of Theorem ofmres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssv 3766 . . 3 𝐴 ⊆ V
2 ssv 3766 . . 3 𝐵 ⊆ V
3 resmpt2 6923 . . 3 ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))))
41, 2, 3mp2an 710 . 2 ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
5 df-of 7062 . . 3 𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
65reseq1i 5547 . 2 ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵))
7 eqid 2760 . . 3 𝐴 = 𝐴
8 eqid 2760 . . 3 𝐵 = 𝐵
9 vex 3343 . . . 4 𝑓 ∈ V
10 vex 3343 . . . 4 𝑔 ∈ V
119dmex 7264 . . . . . 6 dom 𝑓 ∈ V
1211inex1 4951 . . . . 5 (dom 𝑓 ∩ dom 𝑔) ∈ V
1312mptex 6650 . . . 4 (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) ∈ V
145ovmpt4g 6948 . . . 4 ((𝑓 ∈ V ∧ 𝑔 ∈ V ∧ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) ∈ V) → (𝑓𝑓 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
159, 10, 13, 14mp3an 1573 . . 3 (𝑓𝑓 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))
167, 8, 15mpt2eq123i 6883 . 2 (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
174, 6, 163eqtr4i 2792 1 ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wcel 2139  Vcvv 3340  cin 3714  wss 3715  cmpt 4881   × cxp 5264  dom cdm 5266  cres 5268  cfv 6049  (class class class)co 6813  cmpt2 6815  𝑓 cof 7060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062
This theorem is referenced by:  mplsubrglem  19641  psrplusgpropd  19808
  Copyright terms: Public domain W3C validator