![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofmres | Structured version Visualization version GIF version |
Description: Equivalent expressions for a restriction of the function operation map. Unlike ∘𝑓 𝑅 which is a proper class, ( ∘𝑓 𝑅 ∣ ‘(𝐴 × 𝐵)) can be a set by ofmresex 7330, allowing it to be used as a function or structure argument. By ofmresval 7075, the restricted operation map values are the same as the original values, allowing theorems for ∘𝑓 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.) |
Ref | Expression |
---|---|
ofmres | ⊢ ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘𝑓 𝑅𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3766 | . . 3 ⊢ 𝐴 ⊆ V | |
2 | ssv 3766 | . . 3 ⊢ 𝐵 ⊆ V | |
3 | resmpt2 6923 | . . 3 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))))) | |
4 | 1, 2, 3 | mp2an 710 | . 2 ⊢ ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
5 | df-of 7062 | . . 3 ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
6 | 5 | reseq1i 5547 | . 2 ⊢ ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) ↾ (𝐴 × 𝐵)) |
7 | eqid 2760 | . . 3 ⊢ 𝐴 = 𝐴 | |
8 | eqid 2760 | . . 3 ⊢ 𝐵 = 𝐵 | |
9 | vex 3343 | . . . 4 ⊢ 𝑓 ∈ V | |
10 | vex 3343 | . . . 4 ⊢ 𝑔 ∈ V | |
11 | 9 | dmex 7264 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
12 | 11 | inex1 4951 | . . . . 5 ⊢ (dom 𝑓 ∩ dom 𝑔) ∈ V |
13 | 12 | mptex 6650 | . . . 4 ⊢ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) ∈ V |
14 | 5 | ovmpt4g 6948 | . . . 4 ⊢ ((𝑓 ∈ V ∧ 𝑔 ∈ V ∧ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) ∈ V) → (𝑓 ∘𝑓 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
15 | 9, 10, 13, 14 | mp3an 1573 | . . 3 ⊢ (𝑓 ∘𝑓 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) |
16 | 7, 8, 15 | mpt2eq123i 6883 | . 2 ⊢ (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘𝑓 𝑅𝑔)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
17 | 4, 6, 16 | 3eqtr4i 2792 | 1 ⊢ ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘𝑓 𝑅𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∩ cin 3714 ⊆ wss 3715 ↦ cmpt 4881 × cxp 5264 dom cdm 5266 ↾ cres 5268 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 ∘𝑓 cof 7060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 |
This theorem is referenced by: mplsubrglem 19641 psrplusgpropd 19808 |
Copyright terms: Public domain | W3C validator |