Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  offval3 Structured version   Visualization version   GIF version

Theorem offval3 7319
 Description: General value of (𝐹 ∘𝑓 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offval3 ((𝐹𝑉𝐺𝑊) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝑥,𝑊   𝑥,𝑅

Proof of Theorem offval3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3344 . . 3 (𝐹𝑉𝐹 ∈ V)
21adantr 472 . 2 ((𝐹𝑉𝐺𝑊) → 𝐹 ∈ V)
3 elex 3344 . . 3 (𝐺𝑊𝐺 ∈ V)
43adantl 473 . 2 ((𝐹𝑉𝐺𝑊) → 𝐺 ∈ V)
5 dmexg 7254 . . . 4 (𝐹𝑉 → dom 𝐹 ∈ V)
6 inex1g 4945 . . . 4 (dom 𝐹 ∈ V → (dom 𝐹 ∩ dom 𝐺) ∈ V)
7 mptexg 6640 . . . 4 ((dom 𝐹 ∩ dom 𝐺) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
85, 6, 73syl 18 . . 3 (𝐹𝑉 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
98adantr 472 . 2 ((𝐹𝑉𝐺𝑊) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
10 dmeq 5471 . . . . 5 (𝑎 = 𝐹 → dom 𝑎 = dom 𝐹)
11 dmeq 5471 . . . . 5 (𝑏 = 𝐺 → dom 𝑏 = dom 𝐺)
1210, 11ineqan12d 3951 . . . 4 ((𝑎 = 𝐹𝑏 = 𝐺) → (dom 𝑎 ∩ dom 𝑏) = (dom 𝐹 ∩ dom 𝐺))
13 fveq1 6343 . . . . 5 (𝑎 = 𝐹 → (𝑎𝑥) = (𝐹𝑥))
14 fveq1 6343 . . . . 5 (𝑏 = 𝐺 → (𝑏𝑥) = (𝐺𝑥))
1513, 14oveqan12d 6824 . . . 4 ((𝑎 = 𝐹𝑏 = 𝐺) → ((𝑎𝑥)𝑅(𝑏𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
1612, 15mpteq12dv 4877 . . 3 ((𝑎 = 𝐹𝑏 = 𝐺) → (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎𝑥)𝑅(𝑏𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
17 df-of 7054 . . 3 𝑓 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎𝑥)𝑅(𝑏𝑥))))
1816, 17ovmpt2ga 6947 . 2 ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
192, 4, 9, 18syl3anc 1473 1 ((𝐹𝑉𝐺𝑊) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1624   ∈ wcel 2131  Vcvv 3332   ∩ cin 3706   ↦ cmpt 4873  dom cdm 5258  ‘cfv 6041  (class class class)co 6805   ∘𝑓 cof 7052 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pr 5047  ax-un 7106 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054 This theorem is referenced by:  offres  7320  ofco2  20451  dvsinax  40622  dvcosax  40636
 Copyright terms: Public domain W3C validator