Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  offn Structured version   Visualization version   GIF version

Theorem offn 6950
 Description: The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
Assertion
Ref Expression
offn (𝜑 → (𝐹𝑓 𝑅𝐺) Fn 𝑆)

Proof of Theorem offn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 6718 . . 3 ((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V
2 eqid 2651 . . 3 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
31, 2fnmpti 6060 . 2 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn 𝑆
4 offval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
5 offval.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 offval.3 . . . 4 (𝜑𝐴𝑉)
7 offval.4 . . . 4 (𝜑𝐵𝑊)
8 offval.5 . . . 4 (𝐴𝐵) = 𝑆
9 eqidd 2652 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
10 eqidd 2652 . . . 4 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
114, 5, 6, 7, 8, 9, 10offval 6946 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1211fneq1d 6019 . 2 (𝜑 → ((𝐹𝑓 𝑅𝐺) Fn 𝑆 ↔ (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn 𝑆))
133, 12mpbiri 248 1 (𝜑 → (𝐹𝑓 𝑅𝐺) Fn 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ∩ cin 3606   ↦ cmpt 4762   Fn wfn 5921  ‘cfv 5926  (class class class)co 6690   ∘𝑓 cof 6937 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939 This theorem is referenced by:  offveq  6960  suppofss1d  7377  suppofss2d  7378  ofsubeq0  11055  ofnegsub  11056  ofsubge0  11057  seqof  12898  ofccat  13754  lcomfsupp  18951  psrbagcon  19419  psrbagev1  19558  frlmsslsp  20183  frlmup1  20185  i1faddlem  23505  i1fmullem  23506  dv11cn  23809  coemulc  24056  ofmulrt  24082  plydivlem3  24095  plyrem  24105  jensen  24760  basellem9  24860  broucube  33573  caofcan  38839  ofmul12  38841  ofdivrec  38842  ofdivcan4  38843  ofdivdiv2  38844  mndpsuppss  42477  mndpfsupp  42482
 Copyright terms: Public domain W3C validator