![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > off | Structured version Visualization version GIF version |
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
Ref | Expression |
---|---|
off | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | off.6 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
3 | inss1 3976 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
4 | 2, 3 | eqsstr3i 3777 | . . . . . 6 ⊢ 𝐶 ⊆ 𝐴 |
5 | 4 | sseli 3740 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐴) |
6 | ffvelrn 6520 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝑆 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) | |
7 | 1, 5, 6 | syl2an 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
8 | off.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
9 | inss2 3977 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
10 | 2, 9 | eqsstr3i 3777 | . . . . . 6 ⊢ 𝐶 ⊆ 𝐵 |
11 | 10 | sseli 3740 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵) |
12 | ffvelrn 6520 | . . . . 5 ⊢ ((𝐺:𝐵⟶𝑇 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) ∈ 𝑇) | |
13 | 8, 11, 12 | syl2an 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
14 | off.1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
15 | 14 | ralrimivva 3109 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
16 | 15 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
17 | oveq1 6820 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑧) → (𝑥𝑅𝑦) = ((𝐹‘𝑧)𝑅𝑦)) | |
18 | 17 | eleq1d 2824 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥𝑅𝑦) ∈ 𝑈 ↔ ((𝐹‘𝑧)𝑅𝑦) ∈ 𝑈)) |
19 | oveq2 6821 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑧) → ((𝐹‘𝑧)𝑅𝑦) = ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) | |
20 | 19 | eleq1d 2824 | . . . . 5 ⊢ (𝑦 = (𝐺‘𝑧) → (((𝐹‘𝑧)𝑅𝑦) ∈ 𝑈 ↔ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈)) |
21 | 18, 20 | rspc2va 3462 | . . . 4 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
22 | 7, 13, 16, 21 | syl21anc 1476 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
23 | eqid 2760 | . . 3 ⊢ (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) | |
24 | 22, 23 | fmptd 6548 | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))):𝐶⟶𝑈) |
25 | ffn 6206 | . . . . 5 ⊢ (𝐹:𝐴⟶𝑆 → 𝐹 Fn 𝐴) | |
26 | 1, 25 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
27 | ffn 6206 | . . . . 5 ⊢ (𝐺:𝐵⟶𝑇 → 𝐺 Fn 𝐵) | |
28 | 8, 27 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
29 | off.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
30 | off.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
31 | eqidd 2761 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
32 | eqidd 2761 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
33 | 26, 28, 29, 30, 2, 31, 32 | offval 7069 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
34 | 33 | feq1d 6191 | . 2 ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈 ↔ (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))):𝐶⟶𝑈)) |
35 | 24, 34 | mpbird 247 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∩ cin 3714 ↦ cmpt 4881 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ∘𝑓 cof 7060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 |
This theorem is referenced by: o1of2 14542 ghmplusg 18449 gsumzaddlem 18521 gsumzadd 18522 lcomf 19104 psrbagaddcl 19572 psraddcl 19585 psrvscacl 19595 psrbagev1 19712 evlslem3 19716 frlmup1 20339 mndvcl 20399 tsmsadd 22151 mbfmulc2lem 23613 mbfaddlem 23626 i1fadd 23661 i1fmul 23662 itg1addlem4 23665 i1fmulclem 23668 i1fmulc 23669 mbfi1flimlem 23688 itg2mulclem 23712 itg2mulc 23713 itg2monolem1 23716 itg2addlem 23724 dvaddbr 23900 dvmulbr 23901 dvaddf 23904 dvmulf 23905 dv11cn 23963 plyaddlem 24170 coeeulem 24179 coeaddlem 24204 plydivlem4 24250 jensenlem2 24913 jensen 24914 basellem7 25012 basellem9 25014 dchrmulcl 25173 ofrn 29750 sibfof 30711 signshf 30974 circlemethhgt 31030 poimirlem23 33745 poimirlem24 33746 poimirlem25 33747 poimirlem29 33751 poimirlem30 33752 poimirlem31 33753 poimirlem32 33754 itg2addnc 33777 ftc1anclem3 33800 ftc1anclem6 33803 ftc1anclem8 33805 lfladdcl 34861 lflvscl 34867 mzpclall 37792 mzpindd 37811 expgrowth 39036 binomcxplemnotnn0 39057 dvdivcncf 40645 ofaddmndmap 42632 amgmwlem 43061 |
Copyright terms: Public domain | W3C validator |