![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcf | Structured version Visualization version GIF version |
Description: The function/constant operation produces a function. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
ofcf.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
ofcf.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
ofcf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcf.5 | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
Ref | Expression |
---|---|
ofcf | ⊢ (𝜑 → (𝐹∘𝑓/𝑐𝑅𝐶):𝐴⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcf.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | 1 | ffnd 6185 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | ofcf.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | ofcf.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
5 | eqidd 2772 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
6 | 2, 3, 4, 5 | ofcfval 30500 | . 2 ⊢ (𝜑 → (𝐹∘𝑓/𝑐𝑅𝐶) = (𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧)𝑅𝐶))) |
7 | 1 | ffvelrnda 6504 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) |
8 | 4 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑇) |
9 | ofcf.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
10 | 9 | ralrimivva 3120 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
11 | 10 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
12 | ovrspc2v 6821 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅𝐶) ∈ 𝑈) | |
13 | 7, 8, 11, 12 | syl21anc 1475 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑧)𝑅𝐶) ∈ 𝑈) |
14 | 6, 13 | fmpt3d 6531 | 1 ⊢ (𝜑 → (𝐹∘𝑓/𝑐𝑅𝐶):𝐴⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ∀wral 3061 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 ∘𝑓/𝑐cofc 30497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-ofc 30498 |
This theorem is referenced by: signshf 31005 |
Copyright terms: Public domain | W3C validator |