![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofc12 | Structured version Visualization version GIF version |
Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ofc12.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofc12.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ofc12.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
Ref | Expression |
---|---|
ofc12 | ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofc12.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | ofc12.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | 2 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
4 | ofc12.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
5 | 4 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋) |
6 | fconstmpt 5302 | . . . 4 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
8 | fconstmpt 5302 | . . . 4 ⊢ (𝐴 × {𝐶}) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐶}) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
10 | 1, 3, 5, 7, 9 | offval2 7065 | . 2 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
11 | fconstmpt 5302 | . 2 ⊢ (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) | |
12 | 10, 11 | syl6eqr 2823 | 1 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 {csn 4317 ↦ cmpt 4864 × cxp 5248 (class class class)co 6796 ∘𝑓 cof 7046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 |
This theorem is referenced by: pwsdiagmhm 17577 pwsdiaglmhm 19270 psrlmod 19616 coe1mul2 19854 itg2mulc 23734 dgrmulc 24247 lflvsdi2a 34889 lflvsass 34890 lflsc0N 34892 mendlmod 38289 expgrowth 39060 |
Copyright terms: Public domain | W3C validator |