![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofc1 | Structured version Visualization version GIF version |
Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
ofc1.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofc1.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ofc1.3 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofc1.4 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
Ref | Expression |
---|---|
ofc1 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofc1.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
2 | fnconstg 6206 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
4 | ofc1.3 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
5 | ofc1.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | inidm 3930 | . 2 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
7 | fvconst2g 6583 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) | |
8 | 1, 7 | sylan 489 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
9 | ofc1.4 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
10 | 3, 4, 5, 5, 6, 8, 9 | ofval 7023 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 {csn 4285 × cxp 5216 Fn wfn 5996 ‘cfv 6001 (class class class)co 6765 ∘𝑓 cof 7012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-of 7014 |
This theorem is referenced by: ofnegsub 11131 pwsvscaval 16278 lmhmvsca 19168 psrvscaval 19515 mplvscaval 19571 coe1sclmulfv 19776 mamuvs1 20334 mamuvs2 20335 matvscacell 20365 mdetrsca 20532 mbfmulc2lem 23534 i1fmulclem 23589 itg1mulc 23591 itg2monolem1 23637 uc1pmon1p 24031 coemulc 24131 basellem9 24935 ofdivrec 38944 |
Copyright terms: Public domain | W3C validator |