![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofaddmndmap | Structured version Visualization version GIF version |
Description: The function operation applied to the addition for functions (with the same domain) into a monoid is a function (with the same domain) into the monoid. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
ofaddmndmap.r | ⊢ 𝑅 = (Base‘𝑀) |
ofaddmndmap.p | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
ofaddmndmap | ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉))) → (𝐴 ∘𝑓 + 𝐵) ∈ (𝑅 ↑𝑚 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1228 | . . . 4 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑀 ∈ Mnd) | |
2 | simprl 811 | . . . 4 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑅) | |
3 | simprr 813 | . . . 4 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑅) | |
4 | ofaddmndmap.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑀) | |
5 | ofaddmndmap.p | . . . . 5 ⊢ + = (+g‘𝑀) | |
6 | 4, 5 | mndcl 17522 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥 + 𝑦) ∈ 𝑅) |
7 | 1, 2, 3, 6 | syl3anc 1477 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥 + 𝑦) ∈ 𝑅) |
8 | elmapi 8047 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) → 𝐴:𝑉⟶𝑅) | |
9 | 8 | adantr 472 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) → 𝐴:𝑉⟶𝑅) |
10 | 9 | 3ad2ant3 1130 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉))) → 𝐴:𝑉⟶𝑅) |
11 | elmapi 8047 | . . . . 5 ⊢ (𝐵 ∈ (𝑅 ↑𝑚 𝑉) → 𝐵:𝑉⟶𝑅) | |
12 | 11 | adantl 473 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) → 𝐵:𝑉⟶𝑅) |
13 | 12 | 3ad2ant3 1130 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉))) → 𝐵:𝑉⟶𝑅) |
14 | simp2 1132 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉))) → 𝑉 ∈ 𝑌) | |
15 | inidm 3965 | . . 3 ⊢ (𝑉 ∩ 𝑉) = 𝑉 | |
16 | 7, 10, 13, 14, 14, 15 | off 7078 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉))) → (𝐴 ∘𝑓 + 𝐵):𝑉⟶𝑅) |
17 | fvex 6363 | . . . 4 ⊢ (Base‘𝑀) ∈ V | |
18 | 4, 17 | eqeltri 2835 | . . 3 ⊢ 𝑅 ∈ V |
19 | elmapg 8038 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑉 ∈ 𝑌) → ((𝐴 ∘𝑓 + 𝐵) ∈ (𝑅 ↑𝑚 𝑉) ↔ (𝐴 ∘𝑓 + 𝐵):𝑉⟶𝑅)) | |
20 | 18, 14, 19 | sylancr 698 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉))) → ((𝐴 ∘𝑓 + 𝐵) ∈ (𝑅 ↑𝑚 𝑉) ↔ (𝐴 ∘𝑓 + 𝐵):𝑉⟶𝑅)) |
21 | 16, 20 | mpbird 247 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉))) → (𝐴 ∘𝑓 + 𝐵) ∈ (𝑅 ↑𝑚 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ∘𝑓 cof 7061 ↑𝑚 cmap 8025 Basecbs 16079 +gcplusg 16163 Mndcmnd 17515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-1st 7334 df-2nd 7335 df-map 8027 df-mgm 17463 df-sgrp 17505 df-mnd 17516 |
This theorem is referenced by: lincsumcl 42748 |
Copyright terms: Public domain | W3C validator |