Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oexpnegALTV Structured version   Visualization version   GIF version

Theorem oexpnegALTV 42098
Description: The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) (Revised by AV, 19-Jun-2020.)
Assertion
Ref Expression
oexpnegALTV ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → (-𝐴𝑁) = -(𝐴𝑁))

Proof of Theorem oexpnegALTV
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oddz 42054 . . . . . . 7 (𝑁 ∈ Odd → 𝑁 ∈ ℤ)
2 odd2np1ALTV 42095 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
31, 2syl 17 . . . . . 6 (𝑁 ∈ Odd → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
43biimpd 219 . . . . 5 (𝑁 ∈ Odd → (𝑁 ∈ Odd → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
54pm2.43i 52 . . . 4 (𝑁 ∈ Odd → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
65adantl 473 . . 3 ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
763adant1 1125 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
8 simpl1 1228 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝐴 ∈ ℂ)
9 simprr 813 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((2 · 𝑛) + 1) = 𝑁)
10 simpl2 1230 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑁 ∈ ℕ)
1110nncnd 11228 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑁 ∈ ℂ)
12 1cnd 10248 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 1 ∈ ℂ)
13 2z 11601 . . . . . . . . . . 11 2 ∈ ℤ
14 simprl 811 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑛 ∈ ℤ)
15 zmulcl 11618 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
1613, 14, 15sylancr 698 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (2 · 𝑛) ∈ ℤ)
1716zcnd 11675 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (2 · 𝑛) ∈ ℂ)
1811, 12, 17subadd2d 10603 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝑁 − 1) = (2 · 𝑛) ↔ ((2 · 𝑛) + 1) = 𝑁))
199, 18mpbird 247 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝑁 − 1) = (2 · 𝑛))
20 nnm1nn0 11526 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2110, 20syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝑁 − 1) ∈ ℕ0)
2219, 21eqeltrrd 2840 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (2 · 𝑛) ∈ ℕ0)
238, 22expcld 13202 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑(2 · 𝑛)) ∈ ℂ)
2423, 8mulneg2d 10676 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · -𝐴) = -((𝐴↑(2 · 𝑛)) · 𝐴))
25 sqneg 13117 . . . . . . . . 9 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
268, 25syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑2) = (𝐴↑2))
2726oveq1d 6828 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑2)↑𝑛) = ((𝐴↑2)↑𝑛))
288negcld 10571 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -𝐴 ∈ ℂ)
29 2re 11282 . . . . . . . . . . 11 2 ∈ ℝ
3029a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 2 ∈ ℝ)
3114zred 11674 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑛 ∈ ℝ)
32 2pos 11304 . . . . . . . . . . 11 0 < 2
3332a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 0 < 2)
3422nn0ge0d 11546 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 0 ≤ (2 · 𝑛))
35 prodge0 11062 . . . . . . . . . 10 (((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (0 < 2 ∧ 0 ≤ (2 · 𝑛))) → 0 ≤ 𝑛)
3630, 31, 33, 34, 35syl22anc 1478 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 0 ≤ 𝑛)
37 elnn0z 11582 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛))
3814, 36, 37sylanbrc 701 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 𝑛 ∈ ℕ0)
39 2nn0 11501 . . . . . . . . 9 2 ∈ ℕ0
4039a1i 11 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → 2 ∈ ℕ0)
4128, 38, 40expmuld 13205 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑(2 · 𝑛)) = ((-𝐴↑2)↑𝑛))
428, 38, 40expmuld 13205 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑(2 · 𝑛)) = ((𝐴↑2)↑𝑛))
4327, 41, 423eqtr4d 2804 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑(2 · 𝑛)) = (𝐴↑(2 · 𝑛)))
4443oveq1d 6828 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑(2 · 𝑛)) · -𝐴) = ((𝐴↑(2 · 𝑛)) · -𝐴))
4528, 22expp1d 13203 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑((2 · 𝑛) + 1)) = ((-𝐴↑(2 · 𝑛)) · -𝐴))
469oveq2d 6829 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴↑((2 · 𝑛) + 1)) = (-𝐴𝑁))
4745, 46eqtr3d 2796 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((-𝐴↑(2 · 𝑛)) · -𝐴) = (-𝐴𝑁))
4844, 47eqtr3d 2796 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · -𝐴) = (-𝐴𝑁))
4924, 48eqtr3d 2796 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -((𝐴↑(2 · 𝑛)) · 𝐴) = (-𝐴𝑁))
508, 22expp1d 13203 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑((2 · 𝑛) + 1)) = ((𝐴↑(2 · 𝑛)) · 𝐴))
519oveq2d 6829 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (𝐴↑((2 · 𝑛) + 1)) = (𝐴𝑁))
5250, 51eqtr3d 2796 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → ((𝐴↑(2 · 𝑛)) · 𝐴) = (𝐴𝑁))
5352negeqd 10467 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → -((𝐴↑(2 · 𝑛)) · 𝐴) = -(𝐴𝑁))
5449, 53eqtr3d 2796 . 2 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁)) → (-𝐴𝑁) = -(𝐴𝑁))
557, 54rexlimddv 3173 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → (-𝐴𝑁) = -(𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wrex 3051   class class class wbr 4804  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  -cneg 10459  cn 11212  2c2 11262  0cn0 11484  cz 11569  cexp 13054   Odd codd 42048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-seq 12996  df-exp 13055  df-odd 42050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator