MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oev2 Structured version   Visualization version   GIF version

Theorem oev2 7648
Description: Alternate value of ordinal exponentiation. Compare oev 7639. (Contributed by NM, 2-Jan-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oev2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oev2
StepHypRef Expression
1 oveq12 6699 . . . . . 6 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝑜 𝐵) = (∅ ↑𝑜 ∅))
2 oe0m0 7645 . . . . . 6 (∅ ↑𝑜 ∅) = 1𝑜
31, 2syl6eq 2701 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝑜 𝐵) = 1𝑜)
4 fveq2 6229 . . . . . . . 8 (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘∅))
5 1on 7612 . . . . . . . . . 10 1𝑜 ∈ On
65elexi 3244 . . . . . . . . 9 1𝑜 ∈ V
76rdg0 7562 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘∅) = 1𝑜
84, 7syl6eq 2701 . . . . . . 7 (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) = 1𝑜)
9 inteq 4510 . . . . . . . 8 (𝐵 = ∅ → 𝐵 = ∅)
10 int0 4522 . . . . . . . 8 ∅ = V
119, 10syl6eq 2701 . . . . . . 7 (𝐵 = ∅ → 𝐵 = V)
128, 11ineq12d 3848 . . . . . 6 (𝐵 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵) = (1𝑜 ∩ V))
13 inv1 4003 . . . . . . 7 (1𝑜 ∩ V) = 1𝑜
1413a1i 11 . . . . . 6 (𝐴 = ∅ → (1𝑜 ∩ V) = 1𝑜)
1512, 14sylan9eqr 2707 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵) = 1𝑜)
163, 15eqtr4d 2688 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵))
17 oveq1 6697 . . . . . . 7 (𝐴 = ∅ → (𝐴𝑜 𝐵) = (∅ ↑𝑜 𝐵))
18 oe0m1 7646 . . . . . . . 8 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑𝑜 𝐵) = ∅))
1918biimpa 500 . . . . . . 7 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑𝑜 𝐵) = ∅)
2017, 19sylan9eqr 2707 . . . . . 6 (((𝐵 ∈ On ∧ ∅ ∈ 𝐵) ∧ 𝐴 = ∅) → (𝐴𝑜 𝐵) = ∅)
2120an32s 863 . . . . 5 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → (𝐴𝑜 𝐵) = ∅)
22 int0el 4540 . . . . . . . 8 (∅ ∈ 𝐵 𝐵 = ∅)
2322ineq2d 3847 . . . . . . 7 (∅ ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ∅))
24 in0 4001 . . . . . . 7 ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ∅) = ∅
2523, 24syl6eq 2701 . . . . . 6 (∅ ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵) = ∅)
2625adantl 481 . . . . 5 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵) = ∅)
2721, 26eqtr4d 2688 . . . 4 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵))
2816, 27oe0lem 7638 . . 3 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵))
29 inteq 4510 . . . . . . . . . 10 (𝐴 = ∅ → 𝐴 = ∅)
3029, 10syl6eq 2701 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = V)
3130difeq2d 3761 . . . . . . . 8 (𝐴 = ∅ → (V ∖ 𝐴) = (V ∖ V))
32 difid 3981 . . . . . . . 8 (V ∖ V) = ∅
3331, 32syl6eq 2701 . . . . . . 7 (𝐴 = ∅ → (V ∖ 𝐴) = ∅)
3433uneq2d 3800 . . . . . 6 (𝐴 = ∅ → ( 𝐵 ∪ (V ∖ 𝐴)) = ( 𝐵 ∪ ∅))
35 uncom 3790 . . . . . 6 ( 𝐵 ∪ (V ∖ 𝐴)) = ((V ∖ 𝐴) ∪ 𝐵)
36 un0 4000 . . . . . 6 ( 𝐵 ∪ ∅) = 𝐵
3734, 35, 363eqtr3g 2708 . . . . 5 (𝐴 = ∅ → ((V ∖ 𝐴) ∪ 𝐵) = 𝐵)
3837adantl 481 . . . 4 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((V ∖ 𝐴) ∪ 𝐵) = 𝐵)
3938ineq2d 3847 . . 3 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵))
4028, 39eqtr4d 2688 . 2 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
41 oevn0 7640 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))
42 int0el 4540 . . . . . . . . . 10 (∅ ∈ 𝐴 𝐴 = ∅)
4342difeq2d 3761 . . . . . . . . 9 (∅ ∈ 𝐴 → (V ∖ 𝐴) = (V ∖ ∅))
44 dif0 3983 . . . . . . . . 9 (V ∖ ∅) = V
4543, 44syl6eq 2701 . . . . . . . 8 (∅ ∈ 𝐴 → (V ∖ 𝐴) = V)
4645uneq2d 3800 . . . . . . 7 (∅ ∈ 𝐴 → ( 𝐵 ∪ (V ∖ 𝐴)) = ( 𝐵 ∪ V))
47 unv 4004 . . . . . . 7 ( 𝐵 ∪ V) = V
4846, 35, 473eqtr3g 2708 . . . . . 6 (∅ ∈ 𝐴 → ((V ∖ 𝐴) ∪ 𝐵) = V)
4948adantl 481 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((V ∖ 𝐴) ∪ 𝐵) = V)
5049ineq2d 3847 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ V))
51 inv1 4003 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ V) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)
5250, 51syl6req 2702 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
5341, 52eqtrd 2685 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
5440, 53oe0lem 7638 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cdif 3604  cun 3605  cin 3606  c0 3948   cint 4507  cmpt 4762  Oncon0 5761  cfv 5926  (class class class)co 6690  reccrdg 7550  1𝑜c1o 7598   ·𝑜 comu 7603  𝑜 coe 7604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oexp 7611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator