![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oemapwe | Structured version Visualization version GIF version |
Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
Ref | Expression |
---|---|
oemapwe | ⊢ (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴 ↑𝑜 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ On) | |
2 | cantnfs.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ On) | |
3 | oecl 7771 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜 𝐵) ∈ On) | |
4 | 1, 2, 3 | syl2anc 573 | . . . 4 ⊢ (𝜑 → (𝐴 ↑𝑜 𝐵) ∈ On) |
5 | eloni 5876 | . . . 4 ⊢ ((𝐴 ↑𝑜 𝐵) ∈ On → Ord (𝐴 ↑𝑜 𝐵)) | |
6 | ordwe 5879 | . . . 4 ⊢ (Ord (𝐴 ↑𝑜 𝐵) → E We (𝐴 ↑𝑜 𝐵)) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → E We (𝐴 ↑𝑜 𝐵)) |
8 | cantnfs.s | . . . . 5 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
9 | oemapval.t | . . . . 5 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
10 | 8, 1, 2, 9 | cantnf 8754 | . . . 4 ⊢ (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑𝑜 𝐵))) |
11 | isowe 6742 | . . . 4 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑𝑜 𝐵)) → (𝑇 We 𝑆 ↔ E We (𝐴 ↑𝑜 𝐵))) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑇 We 𝑆 ↔ E We (𝐴 ↑𝑜 𝐵))) |
13 | 7, 12 | mpbird 247 | . 2 ⊢ (𝜑 → 𝑇 We 𝑆) |
14 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → Ord (𝐴 ↑𝑜 𝐵)) |
15 | isocnv 6723 | . . . . . 6 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑𝑜 𝐵)) → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑𝑜 𝐵), 𝑆)) | |
16 | 10, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑𝑜 𝐵), 𝑆)) |
17 | ovex 6823 | . . . . . . . . 9 ⊢ (𝐴 CNF 𝐵) ∈ V | |
18 | 17 | dmex 7246 | . . . . . . . 8 ⊢ dom (𝐴 CNF 𝐵) ∈ V |
19 | 8, 18 | eqeltri 2846 | . . . . . . 7 ⊢ 𝑆 ∈ V |
20 | exse 5213 | . . . . . . 7 ⊢ (𝑆 ∈ V → 𝑇 Se 𝑆) | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ 𝑇 Se 𝑆 |
22 | eqid 2771 | . . . . . . 7 ⊢ OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆) | |
23 | 22 | oieu 8600 | . . . . . 6 ⊢ ((𝑇 We 𝑆 ∧ 𝑇 Se 𝑆) → ((Ord (𝐴 ↑𝑜 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑𝑜 𝐵), 𝑆)) ↔ ((𝐴 ↑𝑜 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
24 | 13, 21, 23 | sylancl 574 | . . . . 5 ⊢ (𝜑 → ((Ord (𝐴 ↑𝑜 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑𝑜 𝐵), 𝑆)) ↔ ((𝐴 ↑𝑜 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
25 | 14, 16, 24 | mpbi2and 691 | . . . 4 ⊢ (𝜑 → ((𝐴 ↑𝑜 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))) |
26 | 25 | simpld 482 | . . 3 ⊢ (𝜑 → (𝐴 ↑𝑜 𝐵) = dom OrdIso(𝑇, 𝑆)) |
27 | 26 | eqcomd 2777 | . 2 ⊢ (𝜑 → dom OrdIso(𝑇, 𝑆) = (𝐴 ↑𝑜 𝐵)) |
28 | 13, 27 | jca 501 | 1 ⊢ (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴 ↑𝑜 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∃wrex 3062 Vcvv 3351 {copab 4846 E cep 5161 Se wse 5206 We wwe 5207 ◡ccnv 5248 dom cdm 5249 Ord word 5865 Oncon0 5866 ‘cfv 6031 Isom wiso 6032 (class class class)co 6793 ↑𝑜 coe 7712 OrdIsocoi 8570 CNF ccnf 8722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-seqom 7696 df-1o 7713 df-2o 7714 df-oadd 7717 df-omul 7718 df-oexp 7719 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-oi 8571 df-cnf 8723 |
This theorem is referenced by: cantnffval2 8756 wemapwe 8758 |
Copyright terms: Public domain | W3C validator |