Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapwe Structured version   Visualization version   GIF version

Theorem oemapwe 8755
 Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
oemapwe (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴𝑜 𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oemapwe
StepHypRef Expression
1 cantnfs.a . . . . 5 (𝜑𝐴 ∈ On)
2 cantnfs.b . . . . 5 (𝜑𝐵 ∈ On)
3 oecl 7771 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
41, 2, 3syl2anc 573 . . . 4 (𝜑 → (𝐴𝑜 𝐵) ∈ On)
5 eloni 5876 . . . 4 ((𝐴𝑜 𝐵) ∈ On → Ord (𝐴𝑜 𝐵))
6 ordwe 5879 . . . 4 (Ord (𝐴𝑜 𝐵) → E We (𝐴𝑜 𝐵))
74, 5, 63syl 18 . . 3 (𝜑 → E We (𝐴𝑜 𝐵))
8 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
9 oemapval.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
108, 1, 2, 9cantnf 8754 . . . 4 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴𝑜 𝐵)))
11 isowe 6742 . . . 4 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴𝑜 𝐵)) → (𝑇 We 𝑆 ↔ E We (𝐴𝑜 𝐵)))
1210, 11syl 17 . . 3 (𝜑 → (𝑇 We 𝑆 ↔ E We (𝐴𝑜 𝐵)))
137, 12mpbird 247 . 2 (𝜑𝑇 We 𝑆)
144, 5syl 17 . . . . 5 (𝜑 → Ord (𝐴𝑜 𝐵))
15 isocnv 6723 . . . . . 6 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴𝑜 𝐵)) → (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴𝑜 𝐵), 𝑆))
1610, 15syl 17 . . . . 5 (𝜑(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴𝑜 𝐵), 𝑆))
17 ovex 6823 . . . . . . . . 9 (𝐴 CNF 𝐵) ∈ V
1817dmex 7246 . . . . . . . 8 dom (𝐴 CNF 𝐵) ∈ V
198, 18eqeltri 2846 . . . . . . 7 𝑆 ∈ V
20 exse 5213 . . . . . . 7 (𝑆 ∈ V → 𝑇 Se 𝑆)
2119, 20ax-mp 5 . . . . . 6 𝑇 Se 𝑆
22 eqid 2771 . . . . . . 7 OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆)
2322oieu 8600 . . . . . 6 ((𝑇 We 𝑆𝑇 Se 𝑆) → ((Ord (𝐴𝑜 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴𝑜 𝐵), 𝑆)) ↔ ((𝐴𝑜 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2413, 21, 23sylancl 574 . . . . 5 (𝜑 → ((Ord (𝐴𝑜 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴𝑜 𝐵), 𝑆)) ↔ ((𝐴𝑜 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2514, 16, 24mpbi2and 691 . . . 4 (𝜑 → ((𝐴𝑜 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))
2625simpld 482 . . 3 (𝜑 → (𝐴𝑜 𝐵) = dom OrdIso(𝑇, 𝑆))
2726eqcomd 2777 . 2 (𝜑 → dom OrdIso(𝑇, 𝑆) = (𝐴𝑜 𝐵))
2813, 27jca 501 1 (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴𝑜 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∀wral 3061  ∃wrex 3062  Vcvv 3351  {copab 4846   E cep 5161   Se wse 5206   We wwe 5207  ◡ccnv 5248  dom cdm 5249  Ord word 5865  Oncon0 5866  ‘cfv 6031   Isom wiso 6032  (class class class)co 6793   ↑𝑜 coe 7712  OrdIsocoi 8570   CNF ccnf 8722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-seqom 7696  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-oexp 7719  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-oi 8571  df-cnf 8723 This theorem is referenced by:  cantnffval2  8756  wemapwe  8758
 Copyright terms: Public domain W3C validator