![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oelim | Structured version Visualization version GIF version |
Description: Ordinal exponentiation with a limit exponent and nonzero mantissa. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 1-Jan-2005.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oelim | ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑𝑜 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limelon 5901 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) | |
2 | simpr 479 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → Lim 𝐵) | |
3 | 1, 2 | jca 555 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵)) |
4 | rdglim2a 7649 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝑥)) | |
5 | 4 | ad2antlr 765 | . . 3 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝑥)) |
6 | oevn0 7715 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝐵)) | |
7 | onelon 5861 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) | |
8 | oevn0 7715 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝑥)) | |
9 | 7, 8 | sylanl2 686 | . . . . . . . . 9 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝑥)) |
10 | 9 | exp42 640 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝐵 ∈ On → (𝑥 ∈ 𝐵 → (∅ ∈ 𝐴 → (𝐴 ↑𝑜 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝑥))))) |
11 | 10 | com34 91 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝐵 ∈ On → (∅ ∈ 𝐴 → (𝑥 ∈ 𝐵 → (𝐴 ↑𝑜 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝑥))))) |
12 | 11 | imp41 620 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (𝐴 ↑𝑜 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝑥)) |
13 | 12 | iuneq2dv 4650 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∪ 𝑥 ∈ 𝐵 (𝐴 ↑𝑜 𝑥) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝑥)) |
14 | 6, 13 | eqeq12d 2739 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ↑𝑜 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑𝑜 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝑥))) |
15 | 14 | adantlrr 759 | . . 3 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ((𝐴 ↑𝑜 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑𝑜 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·𝑜 𝐴)), 1𝑜)‘𝑥))) |
16 | 5, 15 | mpbird 247 | . 2 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑𝑜 𝑥)) |
17 | 3, 16 | sylanl2 686 | 1 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑𝑜 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 Vcvv 3304 ∅c0 4023 ∪ ciun 4628 ↦ cmpt 4837 Oncon0 5836 Lim wlim 5837 ‘cfv 6001 (class class class)co 6765 reccrdg 7625 1𝑜c1o 7673 ·𝑜 comu 7678 ↑𝑜 coe 7679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oexp 7686 |
This theorem is referenced by: oecl 7737 oe1m 7745 oen0 7786 oeordi 7787 oewordri 7792 oeworde 7793 oelim2 7795 oeoalem 7796 oeoelem 7798 oeeulem 7801 |
Copyright terms: Public domain | W3C validator |