Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  odz2prm2pw Structured version   Visualization version   GIF version

Theorem odz2prm2pw 41800
Description: Any power of two is coprime to any prime not being two. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
odz2prm2pw (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))

Proof of Theorem odz2prm2pw
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eldifi 3765 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 2nn 11223 . . . . . . . . 9 2 ∈ ℕ
32a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℕ)
4 2nn0 11347 . . . . . . . . . 10 2 ∈ ℕ0
54a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
6 peano2nn 11070 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
76nnnn0d 11389 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
85, 7nn0expcld 13071 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ0)
93, 8nnexpcld 13070 . . . . . . 7 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 + 1))) ∈ ℕ)
109nnzd 11519 . . . . . 6 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 + 1))) ∈ ℤ)
11 modprm1div 15549 . . . . . 6 ((𝑃 ∈ ℙ ∧ (2↑(2↑(𝑁 + 1))) ∈ ℤ) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1)))
121, 10, 11syl2anr 494 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1)))
13 prmnn 15435 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
141, 13syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
1514adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
16 2z 11447 . . . . . . . 8 2 ∈ ℤ
1716a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ∈ ℤ)
18 eldifsn 4350 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
19 simpr 476 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
2019necomd 2878 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 ≠ 𝑃)
2118, 20sylbi 207 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑃)
22 2prm 15452 . . . . . . . . . 10 2 ∈ ℙ
23 prmrp 15471 . . . . . . . . . 10 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
2422, 1, 23sylancr 696 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
2521, 24mpbird 247 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 gcd 𝑃) = 1)
2625adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 gcd 𝑃) = 1)
2715, 17, 263jca 1261 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1))
288adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(𝑁 + 1)) ∈ ℕ0)
29 odzdvds 15547 . . . . . 6 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ (2↑(𝑁 + 1)) ∈ ℕ0) → (𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1) ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
3027, 28, 29syl2anc 694 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1) ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
3112, 30bitrd 268 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
32 nnnn0 11337 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
335, 32nn0expcld 13071 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
343, 33nnexpcld 13070 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ)
3534nnzd 11519 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℤ)
36 modprm1div 15549 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (2↑(2↑𝑁)) ∈ ℤ) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑𝑁)) − 1)))
371, 35, 36syl2anr 494 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑𝑁)) − 1)))
3833adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑𝑁) ∈ ℕ0)
39 odzdvds 15547 . . . . . . . . 9 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ (2↑𝑁) ∈ ℕ0) → (𝑃 ∥ ((2↑(2↑𝑁)) − 1) ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4027, 38, 39syl2anc 694 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ ((2↑(2↑𝑁)) − 1) ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4137, 40bitrd 268 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4241necon3abid 2859 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ↔ ¬ ((od𝑃)‘2) ∥ (2↑𝑁)))
43 odzcl 15545 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) → ((od𝑃)‘2) ∈ ℕ)
4427, 43syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((od𝑃)‘2) ∈ ℕ)
457adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑁 + 1) ∈ ℕ0)
46 dvdsprmpweqle 15637 . . . . . . . . 9 ((2 ∈ ℙ ∧ ((od𝑃)‘2) ∈ ℕ ∧ (𝑁 + 1) ∈ ℕ0) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛))))
4722, 44, 45, 46mp3an2i 1469 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛))))
48 breq1 4688 . . . . . . . . . . . . 13 (((od𝑃)‘2) = (2↑𝑛) → (((od𝑃)‘2) ∥ (2↑𝑁) ↔ (2↑𝑛) ∥ (2↑𝑁)))
4948adantl 481 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (((od𝑃)‘2) ∥ (2↑𝑁) ↔ (2↑𝑛) ∥ (2↑𝑁)))
5049notbid 307 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) ↔ ¬ (2↑𝑛) ∥ (2↑𝑁)))
51 simpr 476 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → ((od𝑃)‘2) = (2↑𝑛))
5251adantr 480 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → ((od𝑃)‘2) = (2↑𝑛))
53 nn0re 11339 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
546nnred 11073 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
5554adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑁 + 1) ∈ ℝ)
56 leloe 10162 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑛 ≤ (𝑁 + 1) ↔ (𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1))))
5753, 55, 56syl2anr 494 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑁 + 1) ↔ (𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1))))
58 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
59 nn0z 11438 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
6059adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
6160adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑛 ∈ ℤ)
62 nnz 11437 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6362adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑁 ∈ ℤ)
6463adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℤ)
6564adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑁 ∈ ℤ)
66 zleltp1 11466 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑛𝑁𝑛 < (𝑁 + 1)))
6759, 63, 66syl2anr 494 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛𝑁𝑛 < (𝑁 + 1)))
6867biimpar 501 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑛𝑁)
69 eluz2 11731 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ𝑛) ↔ (𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑛𝑁))
7061, 65, 68, 69syl3anbrc 1265 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑁 ∈ (ℤ𝑛))
71 dvdsexp 15096 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℤ ∧ 𝑛 ∈ ℕ0𝑁 ∈ (ℤ𝑛)) → (2↑𝑛) ∥ (2↑𝑁))
7216, 58, 70, 71mp3an2ani 1471 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → (2↑𝑛) ∥ (2↑𝑁))
7372pm2.24d 147 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
7473expcom 450 . . . . . . . . . . . . . . . . . . 19 (𝑛 < (𝑁 + 1) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
75 oveq2 6698 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑁 + 1) → (2↑𝑛) = (2↑(𝑁 + 1)))
76752a1d 26 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑁 + 1) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7774, 76jaoi 393 . . . . . . . . . . . . . . . . . 18 ((𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1)) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7877com12 32 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → ((𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7957, 78sylbid 230 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑁 + 1) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
8079imp 444 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
8180adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
8281imp 444 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → (2↑𝑛) = (2↑(𝑁 + 1)))
8352, 82eqtrd 2685 . . . . . . . . . . . 12 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
8483ex 449 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
8550, 84sylbid 230 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
8685expl 647 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8786rexlimdva 3060 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8847, 87syld 47 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8988com23 86 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9042, 89sylbid 230 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9190com23 86 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9231, 91sylbid 230 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9392com23 86 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9493imp32 448 1 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  cdif 3604  {csn 4210   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725   mod cmo 12708  cexp 12900  cdvds 15027   gcd cgcd 15263  cprime 15432  odcodz 15515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-odz 15517  df-phi 15518  df-pc 15589
This theorem is referenced by:  fmtnoprmfac1lem  41801
  Copyright terms: Public domain W3C validator