![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oduleval | Structured version Visualization version GIF version |
Description: Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduval.d | ⊢ 𝐷 = (ODual‘𝑂) |
oduval.l | ⊢ ≤ = (le‘𝑂) |
Ref | Expression |
---|---|
oduleval | ⊢ ◡ ≤ = (le‘𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6354 | . . . . 5 ⊢ (le‘𝑂) ∈ V | |
2 | 1 | cnvex 7270 | . . . 4 ⊢ ◡(le‘𝑂) ∈ V |
3 | pleid 16243 | . . . . 5 ⊢ le = Slot (le‘ndx) | |
4 | 3 | setsid 16108 | . . . 4 ⊢ ((𝑂 ∈ V ∧ ◡(le‘𝑂) ∈ V) → ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉))) |
5 | 2, 4 | mpan2 709 | . . 3 ⊢ (𝑂 ∈ V → ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉))) |
6 | 3 | str0 16105 | . . . 4 ⊢ ∅ = (le‘∅) |
7 | fvprc 6338 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → (le‘𝑂) = ∅) | |
8 | 7 | cnveqd 5445 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → ◡(le‘𝑂) = ◡∅) |
9 | cnv0 5685 | . . . . 5 ⊢ ◡∅ = ∅ | |
10 | 8, 9 | syl6eq 2802 | . . . 4 ⊢ (¬ 𝑂 ∈ V → ◡(le‘𝑂) = ∅) |
11 | reldmsets 16080 | . . . . . 6 ⊢ Rel dom sSet | |
12 | 11 | ovprc1 6839 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) = ∅) |
13 | 12 | fveq2d 6348 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) = (le‘∅)) |
14 | 6, 10, 13 | 3eqtr4a 2812 | . . 3 ⊢ (¬ 𝑂 ∈ V → ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉))) |
15 | 5, 14 | pm2.61i 176 | . 2 ⊢ ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
16 | oduval.l | . . 3 ⊢ ≤ = (le‘𝑂) | |
17 | 16 | cnveqi 5444 | . 2 ⊢ ◡ ≤ = ◡(le‘𝑂) |
18 | oduval.d | . . . 4 ⊢ 𝐷 = (ODual‘𝑂) | |
19 | eqid 2752 | . . . 4 ⊢ (le‘𝑂) = (le‘𝑂) | |
20 | 18, 19 | oduval 17323 | . . 3 ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
21 | 20 | fveq2i 6347 | . 2 ⊢ (le‘𝐷) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
22 | 15, 17, 21 | 3eqtr4i 2784 | 1 ⊢ ◡ ≤ = (le‘𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1624 ∈ wcel 2131 Vcvv 3332 ∅c0 4050 〈cop 4319 ◡ccnv 5257 ‘cfv 6041 (class class class)co 6805 ndxcnx 16048 sSet csts 16049 lecple 16142 ODualcodu 17321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-ltxr 10263 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-dec 11678 df-ndx 16054 df-slot 16055 df-sets 16058 df-ple 16155 df-odu 17322 |
This theorem is referenced by: oduleg 17325 odupos 17328 oduposb 17329 oduglb 17332 odulub 17334 posglbd 17343 oduprs 29957 odutos 29964 ordtcnvNEW 30267 ordtrest2NEW 30270 |
Copyright terms: Public domain | W3C validator |