![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odulatb | Structured version Visualization version GIF version |
Description: Being a lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduglb.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
odulatb | ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Lat ↔ 𝐷 ∈ Lat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oduglb.d | . . . 4 ⊢ 𝐷 = (ODual‘𝑂) | |
2 | 1 | oduposb 17344 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
3 | ancom 448 | . . . 4 ⊢ ((dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂))) ↔ (dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)))) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ((dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂))) ↔ (dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂))))) |
5 | 2, 4 | anbi12d 616 | . 2 ⊢ (𝑂 ∈ 𝑉 → ((𝑂 ∈ Poset ∧ (dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)))) ↔ (𝐷 ∈ Poset ∧ (dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)))))) |
6 | eqid 2771 | . . 3 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
7 | eqid 2771 | . . 3 ⊢ (join‘𝑂) = (join‘𝑂) | |
8 | eqid 2771 | . . 3 ⊢ (meet‘𝑂) = (meet‘𝑂) | |
9 | 6, 7, 8 | islat 17255 | . 2 ⊢ (𝑂 ∈ Lat ↔ (𝑂 ∈ Poset ∧ (dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂))))) |
10 | 1, 6 | odubas 17341 | . . 3 ⊢ (Base‘𝑂) = (Base‘𝐷) |
11 | 1, 8 | odujoin 17350 | . . 3 ⊢ (meet‘𝑂) = (join‘𝐷) |
12 | 1, 7 | odumeet 17348 | . . 3 ⊢ (join‘𝑂) = (meet‘𝐷) |
13 | 10, 11, 12 | islat 17255 | . 2 ⊢ (𝐷 ∈ Lat ↔ (𝐷 ∈ Poset ∧ (dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂))))) |
14 | 5, 9, 13 | 3bitr4g 303 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Lat ↔ 𝐷 ∈ Lat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 × cxp 5248 dom cdm 5250 ‘cfv 6030 Basecbs 16064 Posetcpo 17148 joincjn 17152 meetcmee 17153 Latclat 17253 ODualcodu 17336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-dec 11701 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ple 16169 df-preset 17136 df-poset 17154 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-lat 17254 df-odu 17337 |
This theorem is referenced by: odulat 17353 odudlatb 17404 |
Copyright terms: Public domain | W3C validator |