![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oduclatb | Structured version Visualization version GIF version |
Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduglb.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
oduclatb | ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3243 | . 2 ⊢ (𝑂 ∈ CLat → 𝑂 ∈ V) | |
2 | noel 3952 | . . . . 5 ⊢ ¬ ((lub‘∅)‘∅) ∈ ∅ | |
3 | ssid 3657 | . . . . . 6 ⊢ ∅ ⊆ ∅ | |
4 | base0 15959 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
5 | eqid 2651 | . . . . . . 7 ⊢ (lub‘∅) = (lub‘∅) | |
6 | 4, 5 | clatlubcl 17159 | . . . . . 6 ⊢ ((∅ ∈ CLat ∧ ∅ ⊆ ∅) → ((lub‘∅)‘∅) ∈ ∅) |
7 | 3, 6 | mpan2 707 | . . . . 5 ⊢ (∅ ∈ CLat → ((lub‘∅)‘∅) ∈ ∅) |
8 | 2, 7 | mto 188 | . . . 4 ⊢ ¬ ∅ ∈ CLat |
9 | oduglb.d | . . . . . 6 ⊢ 𝐷 = (ODual‘𝑂) | |
10 | fvprc 6223 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
11 | 9, 10 | syl5eq 2697 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → 𝐷 = ∅) |
12 | 11 | eleq1d 2715 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (𝐷 ∈ CLat ↔ ∅ ∈ CLat)) |
13 | 8, 12 | mtbiri 316 | . . 3 ⊢ (¬ 𝑂 ∈ V → ¬ 𝐷 ∈ CLat) |
14 | 13 | con4i 113 | . 2 ⊢ (𝐷 ∈ CLat → 𝑂 ∈ V) |
15 | 9 | oduposb 17183 | . . . 4 ⊢ (𝑂 ∈ V → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
16 | ancom 465 | . . . . 5 ⊢ ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂))) | |
17 | eqid 2651 | . . . . . . . . 9 ⊢ (glb‘𝑂) = (glb‘𝑂) | |
18 | 9, 17 | odulub 17188 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷)) |
19 | 18 | dmeqd 5358 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (glb‘𝑂) = dom (lub‘𝐷)) |
20 | 19 | eqeq1d 2653 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (lub‘𝐷) = 𝒫 (Base‘𝑂))) |
21 | eqid 2651 | . . . . . . . . 9 ⊢ (lub‘𝑂) = (lub‘𝑂) | |
22 | 9, 21 | oduglb 17186 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷)) |
23 | 22 | dmeqd 5358 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (lub‘𝑂) = dom (glb‘𝐷)) |
24 | 23 | eqeq1d 2653 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))) |
25 | 20, 24 | anbi12d 747 | . . . . 5 ⊢ (𝑂 ∈ V → ((dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
26 | 16, 25 | syl5bb 272 | . . . 4 ⊢ (𝑂 ∈ V → ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
27 | 15, 26 | anbi12d 747 | . . 3 ⊢ (𝑂 ∈ V → ((𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))) ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))) |
28 | eqid 2651 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
29 | 28, 21, 17 | isclat 17156 | . . 3 ⊢ (𝑂 ∈ CLat ↔ (𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)))) |
30 | 9, 28 | odubas 17180 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝐷) |
31 | eqid 2651 | . . . 4 ⊢ (lub‘𝐷) = (lub‘𝐷) | |
32 | eqid 2651 | . . . 4 ⊢ (glb‘𝐷) = (glb‘𝐷) | |
33 | 30, 31, 32 | isclat 17156 | . . 3 ⊢ (𝐷 ∈ CLat ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
34 | 27, 29, 33 | 3bitr4g 303 | . 2 ⊢ (𝑂 ∈ V → (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)) |
35 | 1, 14, 34 | pm5.21nii 367 | 1 ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 ∅c0 3948 𝒫 cpw 4191 dom cdm 5143 ‘cfv 5926 Basecbs 15904 Posetcpo 16987 lubclub 16989 glbcglb 16990 CLatccla 17154 ODualcodu 17175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-dec 11532 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ple 16008 df-preset 16975 df-poset 16993 df-lub 17021 df-glb 17022 df-clat 17155 df-odu 17176 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |