![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oddpwdcv | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 30572: value of the 𝐹 function. (Contributed by Thierry Arnoux, 9-Sep-2017.) |
Ref | Expression |
---|---|
oddpwdc.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
oddpwdc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
Ref | Expression |
---|---|
oddpwdcv | ⊢ (𝑊 ∈ (𝐽 × ℕ0) → (𝐹‘𝑊) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 7249 | . . 3 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
2 | 1 | fveq2d 6233 | . 2 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → (𝐹‘𝑊) = (𝐹‘〈(1st ‘𝑊), (2nd ‘𝑊)〉)) |
3 | df-ov 6693 | . . 3 ⊢ ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = (𝐹‘〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = (𝐹‘〈(1st ‘𝑊), (2nd ‘𝑊)〉)) |
5 | elxp6 7244 | . . . 4 ⊢ (𝑊 ∈ (𝐽 × ℕ0) ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝐽 ∧ (2nd ‘𝑊) ∈ ℕ0))) | |
6 | 5 | simprbi 479 | . . 3 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → ((1st ‘𝑊) ∈ 𝐽 ∧ (2nd ‘𝑊) ∈ ℕ0)) |
7 | oveq2 6698 | . . . 4 ⊢ (𝑥 = (1st ‘𝑊) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · (1st ‘𝑊))) | |
8 | oveq2 6698 | . . . . 5 ⊢ (𝑦 = (2nd ‘𝑊) → (2↑𝑦) = (2↑(2nd ‘𝑊))) | |
9 | 8 | oveq1d 6705 | . . . 4 ⊢ (𝑦 = (2nd ‘𝑊) → ((2↑𝑦) · (1st ‘𝑊)) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
10 | oddpwdc.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) | |
11 | ovex 6718 | . . . 4 ⊢ ((2↑(2nd ‘𝑊)) · (1st ‘𝑊)) ∈ V | |
12 | 7, 9, 10, 11 | ovmpt2 6838 | . . 3 ⊢ (((1st ‘𝑊) ∈ 𝐽 ∧ (2nd ‘𝑊) ∈ ℕ0) → ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
13 | 6, 12 | syl 17 | . 2 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
14 | 2, 4, 13 | 3eqtr2d 2691 | 1 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → (𝐹‘𝑊) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 〈cop 4216 class class class wbr 4685 × cxp 5141 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 1st c1st 7208 2nd c2nd 7209 · cmul 9979 ℕcn 11058 2c2 11108 ℕ0cn0 11330 ↑cexp 12900 ∥ cdvds 15027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 |
This theorem is referenced by: eulerpartlemgvv 30566 eulerpartlemgh 30568 eulerpartlemgs2 30570 |
Copyright terms: Public domain | W3C validator |