![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oddprm | Structured version Visualization version GIF version |
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
oddprm | ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3863 | . . . . 5 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ) | |
2 | prmz 15562 | . . . . 5 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℤ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℤ) |
4 | eldifsni 4454 | . . . . . . 7 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ≠ 2) | |
5 | 4 | necomd 2975 | . . . . . 6 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑁) |
6 | 5 | neneqd 2925 | . . . . 5 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 = 𝑁) |
7 | 2z 11572 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
8 | uzid 11865 | . . . . . . 7 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
10 | dvdsprm 15588 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℙ) → (2 ∥ 𝑁 ↔ 2 = 𝑁)) | |
11 | 9, 1, 10 | sylancr 698 | . . . . 5 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ 𝑁 ↔ 2 = 𝑁)) |
12 | 6, 11 | mtbird 314 | . . . 4 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁) |
13 | 1z 11570 | . . . . 5 ⊢ 1 ∈ ℤ | |
14 | n2dvds1 15277 | . . . . 5 ⊢ ¬ 2 ∥ 1 | |
15 | omoe 15261 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1)) | |
16 | 13, 14, 15 | mpanr12 723 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1)) |
17 | 3, 12, 16 | syl2anc 696 | . . 3 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 2 ∥ (𝑁 − 1)) |
18 | prmnn 15561 | . . . . 5 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
19 | nnm1nn0 11497 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
20 | 1, 18, 19 | 3syl 18 | . . . 4 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 − 1) ∈ ℕ0) |
21 | nn0z 11563 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) | |
22 | 2ne0 11276 | . . . . 5 ⊢ 2 ≠ 0 | |
23 | dvdsval2 15156 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | |
24 | 7, 22, 23 | mp3an12 1551 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ)) |
25 | 20, 21, 24 | 3syl 18 | . . 3 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ)) |
26 | 17, 25 | mpbid 222 | . 2 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℤ) |
27 | prmuz2 15581 | . . 3 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ≥‘2)) | |
28 | uz2m1nn 11927 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | |
29 | nnre 11190 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℝ) | |
30 | nngt0 11212 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ → 0 < (𝑁 − 1)) | |
31 | 2re 11253 | . . . . 5 ⊢ 2 ∈ ℝ | |
32 | 2pos 11275 | . . . . 5 ⊢ 0 < 2 | |
33 | divgt0 11054 | . . . . 5 ⊢ ((((𝑁 − 1) ∈ ℝ ∧ 0 < (𝑁 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < ((𝑁 − 1) / 2)) | |
34 | 31, 32, 33 | mpanr12 723 | . . . 4 ⊢ (((𝑁 − 1) ∈ ℝ ∧ 0 < (𝑁 − 1)) → 0 < ((𝑁 − 1) / 2)) |
35 | 29, 30, 34 | syl2anc 696 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ → 0 < ((𝑁 − 1) / 2)) |
36 | 1, 27, 28, 35 | 4syl 19 | . 2 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 0 < ((𝑁 − 1) / 2)) |
37 | elnnz 11550 | . 2 ⊢ (((𝑁 − 1) / 2) ∈ ℕ ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 − 1) / 2))) | |
38 | 26, 36, 37 | sylanbrc 701 | 1 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 ∖ cdif 3700 {csn 4309 class class class wbr 4792 ‘cfv 6037 (class class class)co 6801 ℝcr 10098 0cc0 10099 1c1 10100 < clt 10237 − cmin 10429 / cdiv 10847 ℕcn 11183 2c2 11233 ℕ0cn0 11455 ℤcz 11540 ℤ≥cuz 11850 ∥ cdvds 15153 ℙcprime 15558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8501 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-seq 12967 df-exp 13026 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-dvds 15154 df-prm 15559 |
This theorem is referenced by: nnoddn2prm 15689 4sqlem19 15840 lgslem1 25192 lgslem4 25195 lgsval2lem 25202 lgsvalmod 25211 lgsmod 25218 lgsdirprm 25226 lgsne0 25230 lgsqrlem1 25241 lgsqrlem2 25242 lgsqrlem3 25243 lgsqrlem4 25244 gausslemma2dlem4 25264 lgseisenlem1 25270 lgseisenlem2 25271 lgseisenlem4 25273 lgseisen 25274 lgsquadlem1 25275 lgsquadlem2 25276 lgsquadlem3 25277 m1lgs 25283 2lgslem2 25290 fmtnoprmfac2 41958 |
Copyright terms: Public domain | W3C validator |