Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  odd2prm2 Structured version   Visualization version   GIF version

Theorem odd2prm2 42156
 Description: If an odd number is the sum of two prime numbers, one of the prime numbers must be 2. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
odd2prm2 ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))

Proof of Theorem odd2prm2
StepHypRef Expression
1 eleq1 2828 . . . . . 6 (𝑁 = (𝑃 + 𝑄) → (𝑁 ∈ Odd ↔ (𝑃 + 𝑄) ∈ Odd ))
2 evennodd 42085 . . . . . . . . 9 ((𝑃 + 𝑄) ∈ Even → ¬ (𝑃 + 𝑄) ∈ Odd )
32pm2.21d 118 . . . . . . . 8 ((𝑃 + 𝑄) ∈ Even → ((𝑃 + 𝑄) ∈ Odd → (𝑃 = 2 ∨ 𝑄 = 2)))
4 df-ne 2934 . . . . . . . . . . . 12 (𝑃 ≠ 2 ↔ ¬ 𝑃 = 2)
5 eldifsn 4463 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
6 oddprmALTV 42127 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ Odd )
75, 6sylbir 225 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈ Odd )
87ex 449 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈ Odd ))
94, 8syl5bir 233 . . . . . . . . . . 11 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ Odd ))
10 df-ne 2934 . . . . . . . . . . . 12 (𝑄 ≠ 2 ↔ ¬ 𝑄 = 2)
11 eldifsn 4463 . . . . . . . . . . . . . 14 (𝑄 ∈ (ℙ ∖ {2}) ↔ (𝑄 ∈ ℙ ∧ 𝑄 ≠ 2))
12 oddprmALTV 42127 . . . . . . . . . . . . . 14 (𝑄 ∈ (ℙ ∖ {2}) → 𝑄 ∈ Odd )
1311, 12sylbir 225 . . . . . . . . . . . . 13 ((𝑄 ∈ ℙ ∧ 𝑄 ≠ 2) → 𝑄 ∈ Odd )
1413ex 449 . . . . . . . . . . . 12 (𝑄 ∈ ℙ → (𝑄 ≠ 2 → 𝑄 ∈ Odd ))
1510, 14syl5bir 233 . . . . . . . . . . 11 (𝑄 ∈ ℙ → (¬ 𝑄 = 2 → 𝑄 ∈ Odd ))
169, 15im2anan9 916 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd )))
1716imp 444 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ))
18 opoeALTV 42123 . . . . . . . . 9 ((𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ) → (𝑃 + 𝑄) ∈ Even )
1917, 18syl 17 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 + 𝑄) ∈ Even )
203, 19syl11 33 . . . . . . 7 ((𝑃 + 𝑄) ∈ Odd → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 = 2 ∨ 𝑄 = 2)))
2120expd 451 . . . . . 6 ((𝑃 + 𝑄) ∈ Odd → ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2))))
221, 21syl6bi 243 . . . . 5 (𝑁 = (𝑃 + 𝑄) → (𝑁 ∈ Odd → ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2)))))
23223imp231 1105 . . . 4 ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2)))
2423com12 32 . . 3 ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)))
2524ex 449 . 2 𝑃 = 2 → (¬ 𝑄 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))))
26 orc 399 . . 3 (𝑃 = 2 → (𝑃 = 2 ∨ 𝑄 = 2))
2726a1d 25 . 2 (𝑃 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)))
28 olc 398 . . 3 (𝑄 = 2 → (𝑃 = 2 ∨ 𝑄 = 2))
2928a1d 25 . 2 (𝑄 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)))
3025, 27, 29pm2.61ii 177 1 ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140   ≠ wne 2933   ∖ cdif 3713  {csn 4322  (class class class)co 6815   + caddc 10152  2c2 11283  ℙcprime 15608   Even ceven 42066   Odd codd 42067 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-seq 13017  df-exp 13076  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-dvds 15204  df-prm 15609  df-even 42068  df-odd 42069 This theorem is referenced by:  even3prm2  42157
 Copyright terms: Public domain W3C validator