MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odbezout Structured version   Visualization version   GIF version

Theorem odbezout 18182
Description: If 𝑁 is coprime to the order of 𝐴, there is a modular inverse 𝑥 to cancel multiplication by 𝑁. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odbezout (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑁   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odbezout
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1231 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → 𝑁 ∈ ℤ)
2 simpl2 1229 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → 𝐴𝑋)
3 odmulgid.1 . . . . . 6 𝑋 = (Base‘𝐺)
4 odmulgid.2 . . . . . 6 𝑂 = (od‘𝐺)
53, 4odcl 18162 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
62, 5syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (𝑂𝐴) ∈ ℕ0)
76nn0zd 11682 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (𝑂𝐴) ∈ ℤ)
8 bezout 15468 . . 3 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)))
91, 7, 8syl2anc 573 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)))
10 oveq1 6800 . . . . . . 7 (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) = (𝑁 gcd (𝑂𝐴)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴))
1110eqcoms 2779 . . . . . 6 ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴))
12 simpll1 1254 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐺 ∈ Grp)
131adantr 466 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ)
14 simprl 754 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
1513, 14zmulcld 11690 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) ∈ ℤ)
162adantr 466 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴𝑋)
1716, 5syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∈ ℕ0)
1817nn0zd 11682 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∈ ℤ)
19 simprr 756 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
2018, 19zmulcld 11690 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) · 𝑦) ∈ ℤ)
21 odmulgid.3 . . . . . . . . . 10 · = (.g𝐺)
22 eqid 2771 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
233, 21, 22mulgdir 17781 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑥) ∈ ℤ ∧ ((𝑂𝐴) · 𝑦) ∈ ℤ ∧ 𝐴𝑋)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)))
2412, 15, 20, 16, 23syl13anc 1478 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)))
2513zcnd 11685 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℂ)
2614zcnd 11685 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
2725, 26mulcomd 10263 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑥) = (𝑥 · 𝑁))
2827oveq1d 6808 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = ((𝑥 · 𝑁) · 𝐴))
293, 21mulgass 17787 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
3012, 14, 13, 16, 29syl13anc 1478 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑁) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
3128, 30eqtrd 2805 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · 𝑥) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
32 dvdsmul1 15212 . . . . . . . . . . . 12 (((𝑂𝐴) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦))
3318, 19, 32syl2anc 573 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦))
34 eqid 2771 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
353, 4, 21, 34oddvds 18173 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂𝐴) · 𝑦) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦) ↔ (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺)))
3612, 16, 20, 35syl3anc 1476 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ ((𝑂𝐴) · 𝑦) ↔ (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺)))
3733, 36mpbid 222 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑂𝐴) · 𝑦) · 𝐴) = (0g𝐺))
3831, 37oveq12d 6811 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)) = ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)))
393, 21mulgcl 17767 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
4012, 13, 16, 39syl3anc 1476 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝐴) ∈ 𝑋)
413, 21mulgcl 17767 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ (𝑁 · 𝐴) ∈ 𝑋) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋)
4212, 14, 40, 41syl3anc 1476 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋)
433, 22, 34grprid 17661 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑥 · (𝑁 · 𝐴)) ∈ 𝑋) → ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)) = (𝑥 · (𝑁 · 𝐴)))
4412, 42, 43syl2anc 573 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · (𝑁 · 𝐴))(+g𝐺)(0g𝐺)) = (𝑥 · (𝑁 · 𝐴)))
4538, 44eqtrd 2805 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) · 𝐴)(+g𝐺)(((𝑂𝐴) · 𝑦) · 𝐴)) = (𝑥 · (𝑁 · 𝐴)))
4624, 45eqtrd 2805 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = (𝑥 · (𝑁 · 𝐴)))
47 simplr 752 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) = 1)
4847oveq1d 6808 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝐴) = (1 · 𝐴))
493, 21mulg1 17756 . . . . . . . . 9 (𝐴𝑋 → (1 · 𝐴) = 𝐴)
5016, 49syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (1 · 𝐴) = 𝐴)
5148, 50eqtrd 2805 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝐴) = 𝐴)
5246, 51eqeq12d 2786 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) · 𝐴) = ((𝑁 gcd (𝑂𝐴)) · 𝐴) ↔ (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5311, 52syl5ib 234 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5453anassrs 458 . . . 4 (((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5554rexlimdva 3179 . . 3 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) ∧ 𝑥 ∈ ℤ) → (∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → (𝑥 · (𝑁 · 𝐴)) = 𝐴))
5655reximdva 3165 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 gcd (𝑂𝐴)) = ((𝑁 · 𝑥) + ((𝑂𝐴) · 𝑦)) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴))
579, 56mpd 15 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wrex 3062   class class class wbr 4786  cfv 6031  (class class class)co 6793  1c1 10139   + caddc 10141   · cmul 10143  0cn0 11494  cz 11579  cdvds 15189   gcd cgcd 15424  Basecbs 16064  +gcplusg 16149  0gc0g 16308  Grpcgrp 17630  .gcmg 17748  odcod 18151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-od 18155
This theorem is referenced by:  pgpfac1lem2  18682
  Copyright terms: Public domain W3C validator