MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd2 Structured version   Visualization version   GIF version

Theorem odadd2 18444
Description: The order of a product in an abelian group is divisible by the LCM of the orders of the factors divided by the GCD. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd2 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))

Proof of Theorem odadd2
StepHypRef Expression
1 odadd1.2 . . . . . . . . 9 𝑋 = (Base‘𝐺)
2 odadd1.1 . . . . . . . . 9 𝑂 = (od‘𝐺)
31, 2odcl 18147 . . . . . . . 8 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
433ad2ant2 1128 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℕ0)
54nn0zd 11664 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℤ)
61, 2odcl 18147 . . . . . . . 8 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
763ad2ant3 1129 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℕ0)
87nn0zd 11664 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℤ)
95, 8zmulcld 11672 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
109adantr 472 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
11 dvds0 15191 . . . 4 (((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ → ((𝑂𝐴) · (𝑂𝐵)) ∥ 0)
1210, 11syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ 0)
13 simpr 479 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) gcd (𝑂𝐵)) = 0)
1413sq0id 13143 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = 0)
1514oveq2d 6821 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂‘(𝐴 + 𝐵)) · 0))
16 ablgrp 18390 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
17 odadd1.3 . . . . . . . . . . 11 + = (+g𝐺)
181, 17grpcl 17623 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
1916, 18syl3an1 1166 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
201, 2odcl 18147 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
2119, 20syl 17 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
2221nn0zd 11664 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
2322adantr 472 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
2423zcnd 11667 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℂ)
2524mul01d 10419 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · 0) = 0)
2615, 25eqtrd 2786 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = 0)
2712, 26breqtrrd 4824 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
285adantr 472 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℤ)
298adantr 472 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℤ)
3028, 29gcdcld 15424 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0)
3130nn0cnd 11537 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℂ)
3231sqvald 13191 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
3332oveq2d 6821 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵)))))
34 gcddvds 15419 . . . . . . . . 9 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3528, 29, 34syl2anc 696 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3635simpld 477 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴))
3730nn0zd 11664 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
38 simpr 479 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)
39 dvdsval2 15177 . . . . . . . 8 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐴) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4037, 38, 28, 39syl3anc 1473 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4136, 40mpbid 222 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
4241zcnd 11667 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℂ)
4335simprd 482 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵))
44 dvdsval2 15177 . . . . . . . 8 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4537, 38, 29, 44syl3anc 1473 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4643, 45mpbid 222 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
4746zcnd 11667 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℂ)
4842, 31, 47, 31mul4d 10432 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) · (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵)))))
4928zcnd 11667 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℂ)
5049, 31, 38divcan1d 10986 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂𝐴))
5129zcnd 11667 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℂ)
5251, 31, 38divcan1d 10986 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂𝐵))
5350, 52oveq12d 6823 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) · (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((𝑂𝐴) · (𝑂𝐵)))
5433, 48, 533eqtr2d 2792 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂𝐴) · (𝑂𝐵)))
5522adantr 472 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
56 dvdsmul2 15198 . . . . . . . . . 10 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
5755, 28, 56syl2anc 696 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
58 simpl1 1225 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Abel)
5955, 29zmulcld 11672 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ)
60 simpl2 1227 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐴𝑋)
61 simpl3 1229 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐵𝑋)
62 eqid 2752 . . . . . . . . . . . . . 14 (.g𝐺) = (.g𝐺)
631, 62, 17mulgdi 18424 . . . . . . . . . . . . 13 ((𝐺 ∈ Abel ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)))
6458, 59, 60, 61, 63syl13anc 1475 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)))
65 dvdsmul2 15198 . . . . . . . . . . . . . . 15 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
6655, 29, 65syl2anc 696 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
6758, 16syl 17 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Grp)
68 eqid 2752 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
691, 2, 62, 68oddvds 18158 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺)))
7067, 61, 59, 69syl3anc 1473 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺)))
7166, 70mpbid 222 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺))
7271oveq2d 6821 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)))
7364, 72eqtrd 2786 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)))
74 dvdsmul1 15197 . . . . . . . . . . . . 13 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
7555, 29, 74syl2anc 696 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
7619adantr 472 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝐴 + 𝐵) ∈ 𝑋)
771, 2, 62, 68oddvds 18158 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
7867, 76, 59, 77syl3anc 1473 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
7975, 78mpbid 222 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
801, 62mulgcl 17752 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ ∧ 𝐴𝑋) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋)
8167, 59, 60, 80syl3anc 1473 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋)
821, 17, 68grprid 17646 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴))
8367, 81, 82syl2anc 696 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴))
8473, 79, 833eqtr3rd 2795 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺))
851, 2, 62, 68oddvds 18158 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺)))
8667, 60, 59, 85syl3anc 1473 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺)))
8784, 86mpbird 247 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
8855, 28zmulcld 11672 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ)
89 dvdsgcd 15455 . . . . . . . . . 10 (((𝑂𝐴) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
9028, 88, 59, 89syl3anc 1473 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
9157, 87, 90mp2and 717 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))))
9221adantr 472 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
93 mulgcd 15459 . . . . . . . . 9 (((𝑂‘(𝐴 + 𝐵)) ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9492, 28, 29, 93syl3anc 1473 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9591, 94breqtrd 4822 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9650, 95eqbrtrd 4818 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
97 dvdsmulcr 15205 . . . . . . 7 ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
9841, 55, 37, 38, 97syl112anc 1477 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
9996, 98mpbid 222 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)))
1001, 62, 17mulgdi 18424 . . . . . . . . . . . . 13 ((𝐺 ∈ Abel ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
10158, 88, 60, 61, 100syl13anc 1475 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
1021, 2, 62, 68oddvds 18158 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺)))
10367, 60, 88, 102syl3anc 1473 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺)))
10457, 103mpbid 222 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺))
105104oveq1d 6820 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
106101, 105eqtrd 2786 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
107 dvdsmul1 15197 . . . . . . . . . . . . 13 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
10855, 28, 107syl2anc 696 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
1091, 2, 62, 68oddvds 18158 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
11067, 76, 88, 109syl3anc 1473 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
111108, 110mpbid 222 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
1121, 62mulgcl 17752 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ 𝐵𝑋) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋)
11367, 88, 61, 112syl3anc 1473 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋)
1141, 17, 68grplid 17645 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋) → ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵))
11567, 113, 114syl2anc 696 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵))
116106, 111, 1153eqtr3rd 2795 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺))
1171, 2, 62, 68oddvds 18158 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺)))
11867, 61, 88, 117syl3anc 1473 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺)))
119116, 118mpbird 247 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
120 dvdsgcd 15455 . . . . . . . . . 10 (((𝑂𝐵) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
12129, 88, 59, 120syl3anc 1473 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
122119, 66, 121mp2and 717 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))))
123122, 94breqtrd 4822 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
12452, 123eqbrtrd 4818 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
125 dvdsmulcr 15205 . . . . . . 7 ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
12646, 55, 37, 38, 125syl112anc 1477 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
127124, 126mpbid 222 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)))
12841, 46gcdcld 15424 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℕ0)
129128nn0cnd 11537 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℂ)
130 1cnd 10240 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 1 ∈ ℂ)
13131mulid2d 10242 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (1 · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) gcd (𝑂𝐵)))
13250, 52oveq12d 6823 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((𝑂𝐴) gcd (𝑂𝐵)))
133 mulgcdr 15461 . . . . . . . . 9 ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))))
13441, 46, 30, 133syl3anc 1473 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))))
135131, 132, 1343eqtr2rd 2793 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (1 · ((𝑂𝐴) gcd (𝑂𝐵))))
136129, 130, 31, 38, 135mulcan2ad 10847 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) = 1)
137 coprmdvds2 15562 . . . . . 6 (((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ) ∧ (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) = 1) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)) ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵))))
13841, 46, 55, 136, 137syl31anc 1476 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)) ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵))))
13999, 127, 138mp2and 717 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)))
14041, 46zmulcld 11672 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℤ)
141 zsqcl 13120 . . . . . 6 (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ → (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ)
14237, 141syl 17 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ)
143 dvdsmulc 15203 . . . . 5 (((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2))))
144140, 55, 142, 143syl3anc 1473 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2))))
145139, 144mpd 15 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
14654, 145eqbrtrrd 4820 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
14727, 146pm2.61dane 3011 1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924   class class class wbr 4796  cfv 6041  (class class class)co 6805  0cc0 10120  1c1 10121   · cmul 10125   / cdiv 10868  2c2 11254  0cn0 11476  cz 11561  cexp 13046  cdvds 15174   gcd cgcd 15410  Basecbs 16051  +gcplusg 16135  0gc0g 16294  Grpcgrp 17615  .gcmg 17733  odcod 18136  Abelcabl 18386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fz 12512  df-fzo 12652  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-dvds 15175  df-gcd 15411  df-0g 16296  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-grp 17618  df-minusg 17619  df-sbg 17620  df-mulg 17734  df-od 18140  df-cmn 18387  df-abl 18388
This theorem is referenced by:  odadd  18445
  Copyright terms: Public domain W3C validator