MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd Structured version   Visualization version   GIF version

Theorem odadd 18460
Description: The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂𝐴) · (𝑂𝐵)))

Proof of Theorem odadd
StepHypRef Expression
1 simpl1 1227 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐺 ∈ Abel)
2 ablgrp 18405 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐺 ∈ Grp)
4 simpl2 1229 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐴𝑋)
5 simpl3 1231 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐵𝑋)
6 odadd1.2 . . . . 5 𝑋 = (Base‘𝐺)
7 odadd1.3 . . . . 5 + = (+g𝐺)
86, 7grpcl 17638 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
93, 4, 5, 8syl3anc 1476 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝐴 + 𝐵) ∈ 𝑋)
10 odadd1.1 . . . 4 𝑂 = (od‘𝐺)
116, 10odcl 18162 . . 3 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
129, 11syl 17 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
136, 10odcl 18162 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
144, 13syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂𝐴) ∈ ℕ0)
156, 10odcl 18162 . . . 4 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
165, 15syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂𝐵) ∈ ℕ0)
1714, 16nn0mulcld 11558 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℕ0)
18 simpr 471 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) gcd (𝑂𝐵)) = 1)
1918oveq2d 6809 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · 1))
2012nn0cnd 11555 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∈ ℂ)
2120mulid1d 10259 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · 1) = (𝑂‘(𝐴 + 𝐵)))
2219, 21eqtrd 2805 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂‘(𝐴 + 𝐵)))
2310, 6, 7odadd1 18458 . . . 4 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
2423adantr 466 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
2522, 24eqbrtrrd 4810 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)))
2610, 6, 7odadd2 18459 . . . 4 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
2726adantr 466 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
2818oveq1d 6808 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = (1↑2))
29 sq1 13165 . . . . . 6 (1↑2) = 1
3028, 29syl6eq 2821 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = 1)
3130oveq2d 6809 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂‘(𝐴 + 𝐵)) · 1))
3231, 21eqtrd 2805 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = (𝑂‘(𝐴 + 𝐵)))
3327, 32breqtrd 4812 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) · (𝑂𝐵)) ∥ (𝑂‘(𝐴 + 𝐵)))
34 dvdseq 15245 . 2 ((((𝑂‘(𝐴 + 𝐵)) ∈ ℕ0 ∧ ((𝑂𝐴) · (𝑂𝐵)) ∈ ℕ0) ∧ ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ∧ ((𝑂𝐴) · (𝑂𝐵)) ∥ (𝑂‘(𝐴 + 𝐵)))) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂𝐴) · (𝑂𝐵)))
3512, 17, 25, 33, 34syl22anc 1477 1 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂𝐴) · (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4786  cfv 6031  (class class class)co 6793  1c1 10139   · cmul 10143  2c2 11272  0cn0 11494  cexp 13067  cdvds 15189   gcd cgcd 15424  Basecbs 16064  +gcplusg 16149  Grpcgrp 17630  odcod 18151  Abelcabl 18401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-od 18155  df-cmn 18402  df-abl 18403
This theorem is referenced by:  gexexlem  18462
  Copyright terms: Public domain W3C validator