MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvin Structured version   Visualization version   GIF version

Theorem ocvin 20066
Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
ocv2ss.o = (ocv‘𝑊)
ocvin.l 𝐿 = (LSubSp‘𝑊)
ocvin.z 0 = (0g𝑊)
Assertion
Ref Expression
ocvin ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) = { 0 })

Proof of Theorem ocvin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2651 . . . . . . . . 9 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2651 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2651 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5 ocv2ss.o . . . . . . . . 9 = (ocv‘𝑊)
61, 2, 3, 4, 5ocvi 20061 . . . . . . . 8 ((𝑥 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
76ancoms 468 . . . . . . 7 ((𝑥𝑆𝑥 ∈ ( 𝑆)) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
87adantl 481 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
9 simpll 805 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑊 ∈ PreHil)
10 ocvin.l . . . . . . . . 9 𝐿 = (LSubSp‘𝑊)
111, 10lssel 18986 . . . . . . . 8 ((𝑆𝐿𝑥𝑆) → 𝑥 ∈ (Base‘𝑊))
1211ad2ant2lr 799 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑥 ∈ (Base‘𝑊))
13 ocvin.z . . . . . . . 8 0 = (0g𝑊)
143, 2, 1, 4, 13ipeq0 20031 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 ))
159, 12, 14syl2anc 694 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 ))
168, 15mpbid 222 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑥 = 0 )
1716ex 449 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → ((𝑥𝑆𝑥 ∈ ( 𝑆)) → 𝑥 = 0 ))
18 elin 3829 . . . 4 (𝑥 ∈ (𝑆 ∩ ( 𝑆)) ↔ (𝑥𝑆𝑥 ∈ ( 𝑆)))
19 velsn 4226 . . . 4 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2017, 18, 193imtr4g 285 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑥 ∈ (𝑆 ∩ ( 𝑆)) → 𝑥 ∈ { 0 }))
2120ssrdv 3642 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) ⊆ { 0 })
22 phllmod 20023 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
2322adantr 480 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → 𝑊 ∈ LMod)
241, 10lssss 18985 . . . . 5 (𝑆𝐿𝑆 ⊆ (Base‘𝑊))
251, 5, 10ocvlss 20064 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ (Base‘𝑊)) → ( 𝑆) ∈ 𝐿)
2624, 25sylan2 490 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → ( 𝑆) ∈ 𝐿)
2710lssincl 19013 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝐿 ∧ ( 𝑆) ∈ 𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2822, 27syl3an1 1399 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿 ∧ ( 𝑆) ∈ 𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2926, 28mpd3an3 1465 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
3013, 10lss0ss 18997 . . 3 ((𝑊 ∈ LMod ∧ (𝑆 ∩ ( 𝑆)) ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( 𝑆)))
3123, 29, 30syl2anc 694 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → { 0 } ⊆ (𝑆 ∩ ( 𝑆)))
3221, 31eqssd 3653 1 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  cin 3606  wss 3607  {csn 4210  cfv 5926  (class class class)co 6690  Basecbs 15904  Scalarcsca 15991  ·𝑖cip 15993  0gc0g 16147  LModclmod 18911  LSubSpclss 18980  PreHilcphl 20017  ocvcocv 20052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-sca 16004  df-vsca 16005  df-ip 16006  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-ghm 17705  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-lss 18981  df-lmhm 19070  df-lvec 19151  df-sra 19220  df-rgmod 19221  df-phl 20019  df-ocv 20055
This theorem is referenced by:  ocv1  20071  pjdm2  20103  pjff  20104  pjf2  20106  pjfo  20107  obselocv  20120
  Copyright terms: Public domain W3C validator