MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvi Structured version   Visualization version   GIF version

Theorem ocvi 20229
Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvi ((𝐴 ∈ ( 𝑆) ∧ 𝐵𝑆) → (𝐴 , 𝐵) = 0 )

Proof of Theorem ocvi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ocvfval.v . . . 4 𝑉 = (Base‘𝑊)
2 ocvfval.i . . . 4 , = (·𝑖𝑊)
3 ocvfval.f . . . 4 𝐹 = (Scalar‘𝑊)
4 ocvfval.z . . . 4 0 = (0g𝐹)
5 ocvfval.o . . . 4 = (ocv‘𝑊)
61, 2, 3, 4, 5elocv 20228 . . 3 (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
76simp3bi 1140 . 2 (𝐴 ∈ ( 𝑆) → ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )
8 oveq2 6800 . . . 4 (𝑥 = 𝐵 → (𝐴 , 𝑥) = (𝐴 , 𝐵))
98eqeq1d 2772 . . 3 (𝑥 = 𝐵 → ((𝐴 , 𝑥) = 0 ↔ (𝐴 , 𝐵) = 0 ))
109rspccva 3457 . 2 ((∀𝑥𝑆 (𝐴 , 𝑥) = 0𝐵𝑆) → (𝐴 , 𝐵) = 0 )
117, 10sylan 561 1 ((𝐴 ∈ ( 𝑆) ∧ 𝐵𝑆) → (𝐴 , 𝐵) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wral 3060  wss 3721  cfv 6031  (class class class)co 6792  Basecbs 16063  Scalarcsca 16151  ·𝑖cip 16153  0gc0g 16307  ocvcocv 20220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-ov 6795  df-ocv 20223
This theorem is referenced by:  ocvocv  20231  ocvlss  20232  ocvin  20234  lsmcss  20252  clsocv  23267
  Copyright terms: Public domain W3C validator