![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ocvi | Structured version Visualization version GIF version |
Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
ocvfval.v | ⊢ 𝑉 = (Base‘𝑊) |
ocvfval.i | ⊢ , = (·𝑖‘𝑊) |
ocvfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
ocvfval.z | ⊢ 0 = (0g‘𝐹) |
ocvfval.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocvi | ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocvfval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | ocvfval.i | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
3 | ocvfval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | ocvfval.z | . . . 4 ⊢ 0 = (0g‘𝐹) | |
5 | ocvfval.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
6 | 1, 2, 3, 4, 5 | elocv 20228 | . . 3 ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) |
7 | 6 | simp3bi 1140 | . 2 ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ) |
8 | oveq2 6800 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 , 𝑥) = (𝐴 , 𝐵)) | |
9 | 8 | eqeq1d 2772 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 , 𝑥) = 0 ↔ (𝐴 , 𝐵) = 0 )) |
10 | 9 | rspccva 3457 | . 2 ⊢ ((∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
11 | 7, 10 | sylan 561 | 1 ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∀wral 3060 ⊆ wss 3721 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 Scalarcsca 16151 ·𝑖cip 16153 0gc0g 16307 ocvcocv 20220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-ov 6795 df-ocv 20223 |
This theorem is referenced by: ocvocv 20231 ocvlss 20232 ocvin 20234 lsmcss 20252 clsocv 23267 |
Copyright terms: Public domain | W3C validator |