![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ococss | Structured version Visualization version GIF version |
Description: Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ococss | ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3738 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ)) | |
2 | ocorth 28459 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝑦 ·ih 𝑥) = 0)) | |
3 | 2 | expd 451 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → (𝑥 ∈ (⊥‘𝐴) → (𝑦 ·ih 𝑥) = 0))) |
4 | 3 | ralrimdv 3106 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0)) |
5 | 1, 4 | jcad 556 | . . 3 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))) |
6 | ocss 28453 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | |
7 | ocel 28449 | . . . 4 ⊢ ((⊥‘𝐴) ⊆ ℋ → (𝑦 ∈ (⊥‘(⊥‘𝐴)) ↔ (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ (⊥‘(⊥‘𝐴)) ↔ (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))) |
9 | 5, 8 | sylibrd 249 | . 2 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → 𝑦 ∈ (⊥‘(⊥‘𝐴)))) |
10 | 9 | ssrdv 3750 | 1 ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ⊆ wss 3715 ‘cfv 6049 (class class class)co 6813 0cc0 10128 ℋchil 28085 ·ih csp 28088 ⊥cort 28096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-hilex 28165 ax-hfvadd 28166 ax-hv0cl 28169 ax-hfvmul 28171 ax-hvmul0 28176 ax-hfi 28245 ax-his1 28248 ax-his2 28249 ax-his3 28250 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-2 11271 df-cj 14038 df-re 14039 df-im 14040 df-sh 28373 df-oc 28418 |
This theorem is referenced by: shococss 28462 occon3 28465 hsupunss 28511 spanssoc 28517 shunssji 28537 ococin 28576 sshhococi 28714 h1did 28719 spansnpji 28746 pjoccoi 29346 |
Copyright terms: Public domain | W3C validator |