![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ocin | Structured version Visualization version GIF version |
Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ocin | ⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shocel 28269 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (⊥‘𝐴) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0))) | |
2 | oveq2 6698 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑥 ·ih 𝑦) = (𝑥 ·ih 𝑥)) | |
3 | 2 | eqeq1d 2653 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 𝑥) = 0)) |
4 | 3 | rspccv 3337 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0 → (𝑥 ∈ 𝐴 → (𝑥 ·ih 𝑥) = 0)) |
5 | his6 28084 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 ↔ 𝑥 = 0ℎ)) | |
6 | 5 | biimpd 219 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → ((𝑥 ·ih 𝑥) = 0 → 𝑥 = 0ℎ)) |
7 | 4, 6 | sylan9r 691 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0) → (𝑥 ∈ 𝐴 → 𝑥 = 0ℎ)) |
8 | 1, 7 | syl6bi 243 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (⊥‘𝐴) → (𝑥 ∈ 𝐴 → 𝑥 = 0ℎ))) |
9 | 8 | com23 86 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ 𝐴 → (𝑥 ∈ (⊥‘𝐴) → 𝑥 = 0ℎ))) |
10 | 9 | impd 446 | . . . 4 ⊢ (𝐴 ∈ Sℋ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) → 𝑥 = 0ℎ)) |
11 | sh0 28201 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
12 | oc0 28277 | . . . . . 6 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ (⊥‘𝐴)) | |
13 | 11, 12 | jca 553 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (0ℎ ∈ 𝐴 ∧ 0ℎ ∈ (⊥‘𝐴))) |
14 | eleq1 2718 | . . . . . 6 ⊢ (𝑥 = 0ℎ → (𝑥 ∈ 𝐴 ↔ 0ℎ ∈ 𝐴)) | |
15 | eleq1 2718 | . . . . . 6 ⊢ (𝑥 = 0ℎ → (𝑥 ∈ (⊥‘𝐴) ↔ 0ℎ ∈ (⊥‘𝐴))) | |
16 | 14, 15 | anbi12d 747 | . . . . 5 ⊢ (𝑥 = 0ℎ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) ↔ (0ℎ ∈ 𝐴 ∧ 0ℎ ∈ (⊥‘𝐴)))) |
17 | 13, 16 | syl5ibrcom 237 | . . . 4 ⊢ (𝐴 ∈ Sℋ → (𝑥 = 0ℎ → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)))) |
18 | 10, 17 | impbid 202 | . . 3 ⊢ (𝐴 ∈ Sℋ → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) ↔ 𝑥 = 0ℎ)) |
19 | elin 3829 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴))) | |
20 | elch0 28239 | . . 3 ⊢ (𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ) | |
21 | 18, 19, 20 | 3bitr4g 303 | . 2 ⊢ (𝐴 ∈ Sℋ → (𝑥 ∈ (𝐴 ∩ (⊥‘𝐴)) ↔ 𝑥 ∈ 0ℋ)) |
22 | 21 | eqrdv 2649 | 1 ⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∩ cin 3606 ‘cfv 5926 (class class class)co 6690 0cc0 9974 ℋchil 27904 ·ih csp 27907 0ℎc0v 27909 Sℋ csh 27913 ⊥cort 27915 0ℋc0h 27920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-hilex 27984 ax-hfvadd 27985 ax-hv0cl 27988 ax-hfvmul 27990 ax-hvmul0 27995 ax-hfi 28064 ax-his2 28068 ax-his3 28069 ax-his4 28070 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-ltxr 10117 df-sh 28192 df-oc 28237 df-ch0 28238 |
This theorem is referenced by: ocnel 28285 chocunii 28288 pjhtheu 28381 pjpreeq 28385 omlsi 28391 ococi 28392 pjoc1i 28418 orthin 28433 ssjo 28434 chocini 28441 chscllem3 28626 |
Copyright terms: Public domain | W3C validator |