HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occon3 Structured version   Visualization version   GIF version

Theorem occon3 28496
Description: Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
occon3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴)))

Proof of Theorem occon3
StepHypRef Expression
1 ococss 28492 . . . 4 (𝐵 ⊆ ℋ → 𝐵 ⊆ (⊥‘(⊥‘𝐵)))
21adantl 467 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → 𝐵 ⊆ (⊥‘(⊥‘𝐵)))
3 ocss 28484 . . . 4 (𝐵 ⊆ ℋ → (⊥‘𝐵) ⊆ ℋ)
4 occon 28486 . . . 4 ((𝐴 ⊆ ℋ ∧ (⊥‘𝐵) ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → (⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴)))
53, 4sylan2 580 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → (⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴)))
6 sstr2 3759 . . 3 (𝐵 ⊆ (⊥‘(⊥‘𝐵)) → ((⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴) → 𝐵 ⊆ (⊥‘𝐴)))
72, 5, 6sylsyld 61 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝐴)))
8 ococss 28492 . . . 4 (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴)))
98adantr 466 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → 𝐴 ⊆ (⊥‘(⊥‘𝐴)))
10 id 22 . . . 4 (𝐵 ⊆ ℋ → 𝐵 ⊆ ℋ)
11 ocss 28484 . . . 4 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
12 occon 28486 . . . 4 ((𝐵 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵)))
1310, 11, 12syl2anr 584 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵)))
14 sstr2 3759 . . 3 (𝐴 ⊆ (⊥‘(⊥‘𝐴)) → ((⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵) → 𝐴 ⊆ (⊥‘𝐵)))
159, 13, 14sylsyld 61 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → 𝐴 ⊆ (⊥‘𝐵)))
167, 15impbid 202 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wss 3723  cfv 6030  chil 28116  cort 28127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-hilex 28196  ax-hfvadd 28197  ax-hv0cl 28200  ax-hfvmul 28202  ax-hvmul0 28207  ax-hfi 28276  ax-his1 28279  ax-his2 28280  ax-his3 28281
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-2 11285  df-cj 14047  df-re 14048  df-im 14049  df-sh 28404  df-oc 28449
This theorem is referenced by:  chsscon2i  28662  chsscon2  28701
  Copyright terms: Public domain W3C validator