MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obslbs Structured version   Visualization version   GIF version

Theorem obslbs 20122
Description: An orthogonal basis is a linear basis iff the span of the basis elements is closed (which is usually not true). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
obslbs.j 𝐽 = (LBasis‘𝑊)
obslbs.n 𝑁 = (LSpan‘𝑊)
obslbs.c 𝐶 = (CSubSp‘𝑊)
Assertion
Ref Expression
obslbs (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) ∈ 𝐶))

Proof of Theorem obslbs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsrcl 20115 . . . . . 6 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
2 eqid 2651 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
32obsss 20116 . . . . . 6 (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
4 eqid 2651 . . . . . . 7 (ocv‘𝑊) = (ocv‘𝑊)
5 obslbs.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
62, 4, 5ocvlsp 20068 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(𝑁𝐵)) = ((ocv‘𝑊)‘𝐵))
71, 3, 6syl2anc 694 . . . . 5 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘(𝑁𝐵)) = ((ocv‘𝑊)‘𝐵))
87fveq2d 6233 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)))
94, 2obs2ocv 20119 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)) = (Base‘𝑊))
108, 9eqtrd 2685 . . 3 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) = (Base‘𝑊))
1110eqeq2d 2661 . 2 (𝐵 ∈ (OBasis‘𝑊) → ((𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) ↔ (𝑁𝐵) = (Base‘𝑊)))
12 obslbs.c . . . 4 𝐶 = (CSubSp‘𝑊)
134, 12iscss 20075 . . 3 (𝑊 ∈ PreHil → ((𝑁𝐵) ∈ 𝐶 ↔ (𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵)))))
141, 13syl 17 . 2 (𝐵 ∈ (OBasis‘𝑊) → ((𝑁𝐵) ∈ 𝐶 ↔ (𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵)))))
15 phllvec 20022 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
161, 15syl 17 . . 3 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ LVec)
17 pssnel 4072 . . . . . . 7 (𝑥𝐵 → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥))
1817adantl 481 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥))
19 simpll 805 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝐵 ∈ (OBasis‘𝑊))
20 pssss 3735 . . . . . . . . . . . 12 (𝑥𝐵𝑥𝐵)
2120ad2antlr 763 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
22 simpr 476 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
234obselocv 20120 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) ↔ ¬ 𝑦𝑥))
2419, 21, 22, 23syl3anc 1366 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) ↔ ¬ 𝑦𝑥))
25 eqid 2651 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
2625obsne0 20117 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑦𝐵) → 𝑦 ≠ (0g𝑊))
2719, 22, 26syl2anc 694 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦 ≠ (0g𝑊))
28 nelsn 4245 . . . . . . . . . . . 12 (𝑦 ≠ (0g𝑊) → ¬ 𝑦 ∈ {(0g𝑊)})
2927, 28syl 17 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ¬ 𝑦 ∈ {(0g𝑊)})
30 nelne1 2919 . . . . . . . . . . . 12 ((𝑦 ∈ ((ocv‘𝑊)‘𝑥) ∧ ¬ 𝑦 ∈ {(0g𝑊)}) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)})
3130expcom 450 . . . . . . . . . . 11 𝑦 ∈ {(0g𝑊)} → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
3229, 31syl 17 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
3324, 32sylbird 250 . . . . . . . . 9 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ 𝑦𝑥 → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
34 npss 3750 . . . . . . . . . . 11 (¬ (𝑁𝑥) ⊊ (Base‘𝑊) ↔ ((𝑁𝑥) ⊆ (Base‘𝑊) → (𝑁𝑥) = (Base‘𝑊)))
35 phllmod 20023 . . . . . . . . . . . . . . 15 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
361, 35syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ LMod)
3736ad2antrr 762 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑊 ∈ LMod)
383ad2antrr 762 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝐵 ⊆ (Base‘𝑊))
3921, 38sstrd 3646 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥 ⊆ (Base‘𝑊))
402, 5lspssv 19031 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑥 ⊆ (Base‘𝑊)) → (𝑁𝑥) ⊆ (Base‘𝑊))
4137, 39, 40syl2anc 694 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑁𝑥) ⊆ (Base‘𝑊))
42 fveq2 6229 . . . . . . . . . . . . 13 ((𝑁𝑥) = (Base‘𝑊) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘(Base‘𝑊)))
431ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑊 ∈ PreHil)
442, 4, 5ocvlsp 20068 . . . . . . . . . . . . . . 15 ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘𝑥))
4543, 39, 44syl2anc 694 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘𝑥))
462, 4, 25ocv1 20071 . . . . . . . . . . . . . . 15 (𝑊 ∈ PreHil → ((ocv‘𝑊)‘(Base‘𝑊)) = {(0g𝑊)})
4743, 46syl 17 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((ocv‘𝑊)‘(Base‘𝑊)) = {(0g𝑊)})
4845, 47eqeq12d 2666 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘(Base‘𝑊)) ↔ ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
4942, 48syl5ib 234 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑁𝑥) = (Base‘𝑊) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5041, 49embantd 59 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((𝑁𝑥) ⊆ (Base‘𝑊) → (𝑁𝑥) = (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5134, 50syl5bi 232 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ (𝑁𝑥) ⊊ (Base‘𝑊) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5251necon1ad 2840 . . . . . . . . 9 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)} → (𝑁𝑥) ⊊ (Base‘𝑊)))
5333, 52syld 47 . . . . . . . 8 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ 𝑦𝑥 → (𝑁𝑥) ⊊ (Base‘𝑊)))
5453expimpd 628 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → ((𝑦𝐵 ∧ ¬ 𝑦𝑥) → (𝑁𝑥) ⊊ (Base‘𝑊)))
5554exlimdv 1901 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → (∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥) → (𝑁𝑥) ⊊ (Base‘𝑊)))
5618, 55mpd 15 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → (𝑁𝑥) ⊊ (Base‘𝑊))
5756ex 449 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → (𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))
5857alrimiv 1895 . . 3 (𝐵 ∈ (OBasis‘𝑊) → ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))
59 obslbs.j . . . . . 6 𝐽 = (LBasis‘𝑊)
602, 59, 5islbs3 19203 . . . . 5 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑁𝐵) = (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))))
61 3anan32 1068 . . . . 5 ((𝐵 ⊆ (Base‘𝑊) ∧ (𝑁𝐵) = (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ↔ ((𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ∧ (𝑁𝐵) = (Base‘𝑊)))
6260, 61syl6bb 276 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ ((𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ∧ (𝑁𝐵) = (Base‘𝑊))))
6362baibd 968 . . 3 ((𝑊 ∈ LVec ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))) → (𝐵𝐽 ↔ (𝑁𝐵) = (Base‘𝑊)))
6416, 3, 58, 63syl12anc 1364 . 2 (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) = (Base‘𝑊)))
6511, 14, 643bitr4rd 301 1 (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054  wal 1521   = wceq 1523  wex 1744  wcel 2030  wne 2823  wss 3607  wpss 3608  {csn 4210  cfv 5926  Basecbs 15904  0gc0g 16147  LModclmod 18911  LSpanclspn 19019  LBasisclbs 19122  LVecclvec 19150  PreHilcphl 20017  ocvcocv 20052  CSubSpccss 20053  OBasiscobs 20094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-grp 17472  df-minusg 17473  df-sbg 17474  df-ghm 17705  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-rnghom 18763  df-drng 18797  df-staf 18893  df-srng 18894  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lmhm 19070  df-lbs 19123  df-lvec 19151  df-sra 19220  df-rgmod 19221  df-phl 20019  df-ocv 20055  df-css 20056  df-obs 20097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator