![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > obs2ss | Structured version Visualization version GIF version |
Description: A basis has no proper subsets that are also bases. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obs2ss | ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1083 | . 2 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) → 𝐶 ⊆ 𝐵) | |
2 | eqid 2651 | . . . . . . 7 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
3 | 2 | obsne0 20117 | . . . . . 6 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ∈ 𝐵) → 𝑥 ≠ (0g‘𝑊)) |
4 | 3 | 3ad2antl1 1243 | . . . . 5 ⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ≠ (0g‘𝑊)) |
5 | eqid 2651 | . . . . . . . . . 10 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
6 | 5 | obselocv 20120 | . . . . . . . . 9 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ ((ocv‘𝑊)‘𝐶) ↔ ¬ 𝑥 ∈ 𝐶)) |
7 | 6 | 3expa 1284 | . . . . . . . 8 ⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ ((ocv‘𝑊)‘𝐶) ↔ ¬ 𝑥 ∈ 𝐶)) |
8 | 7 | 3adantl2 1238 | . . . . . . 7 ⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ ((ocv‘𝑊)‘𝐶) ↔ ¬ 𝑥 ∈ 𝐶)) |
9 | simpl2 1085 | . . . . . . . . . 10 ⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (OBasis‘𝑊)) | |
10 | 2, 5 | obsocv 20118 | . . . . . . . . . 10 ⊢ (𝐶 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘𝐶) = {(0g‘𝑊)}) |
11 | 9, 10 | syl 17 | . . . . . . . . 9 ⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((ocv‘𝑊)‘𝐶) = {(0g‘𝑊)}) |
12 | 11 | eleq2d 2716 | . . . . . . . 8 ⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ ((ocv‘𝑊)‘𝐶) ↔ 𝑥 ∈ {(0g‘𝑊)})) |
13 | elsni 4227 | . . . . . . . 8 ⊢ (𝑥 ∈ {(0g‘𝑊)} → 𝑥 = (0g‘𝑊)) | |
14 | 12, 13 | syl6bi 243 | . . . . . . 7 ⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ ((ocv‘𝑊)‘𝐶) → 𝑥 = (0g‘𝑊))) |
15 | 8, 14 | sylbird 250 | . . . . . 6 ⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐵) → (¬ 𝑥 ∈ 𝐶 → 𝑥 = (0g‘𝑊))) |
16 | 15 | necon1ad 2840 | . . . . 5 ⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ≠ (0g‘𝑊) → 𝑥 ∈ 𝐶)) |
17 | 4, 16 | mpd 15 | . . . 4 ⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) |
18 | 17 | ex 449 | . . 3 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) |
19 | 18 | ssrdv 3642 | . 2 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) → 𝐵 ⊆ 𝐶) |
20 | 1, 19 | eqssd 3653 | 1 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ⊆ wss 3607 {csn 4210 ‘cfv 5926 0gc0g 16147 ocvcocv 20052 OBasiscobs 20094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-grp 17472 df-minusg 17473 df-sbg 17474 df-ghm 17705 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-rnghom 18763 df-drng 18797 df-staf 18893 df-srng 18894 df-lmod 18913 df-lss 18981 df-lsp 19020 df-lmhm 19070 df-lvec 19151 df-sra 19220 df-rgmod 19221 df-phl 20019 df-ocv 20055 df-obs 20097 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |